Trans

REMARK Materials Studio PDB file
REMARK DMOL3 optimised structure, B3LYP/DNP 4.4 atomic basis set
REMARK Relative energy compared to a static trans conformation: ca -2.8 kJ mol⁻¹

<table>
<thead>
<tr>
<th>Atom</th>
<th>Number</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Charge</th>
<th>Temperature</th>
<th>Mass</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1</td>
<td>11.196</td>
<td>7.505</td>
<td>0.030</td>
<td>1.00</td>
<td>0.03</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>2</td>
<td>7.103</td>
<td>8.525</td>
<td>-2.890</td>
<td>1.00</td>
<td>0.02</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>H1B</td>
<td>3</td>
<td>6.382</td>
<td>8.543</td>
<td>-3.604</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>4</td>
<td>11.838</td>
<td>8.009</td>
<td>1.560</td>
<td>1.00</td>
<td>0.02</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>5</td>
<td>12.734</td>
<td>7.308</td>
<td>2.364</td>
<td>1.00</td>
<td>0.03</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>H2A</td>
<td>6</td>
<td>13.128</td>
<td>6.350</td>
<td>2.048</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>7</td>
<td>13.102</td>
<td>7.856</td>
<td>3.581</td>
<td>1.00</td>
<td>0.03</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>H3A</td>
<td>8</td>
<td>13.788</td>
<td>7.321</td>
<td>4.226</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>9</td>
<td>12.591</td>
<td>9.097</td>
<td>3.985</td>
<td>1.00</td>
<td>0.03</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>H4A</td>
<td>10</td>
<td>12.888</td>
<td>9.513</td>
<td>4.940</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>11</td>
<td>11.707</td>
<td>9.796</td>
<td>3.184</td>
<td>1.00</td>
<td>0.02</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>12</td>
<td>11.305</td>
<td>10.747</td>
<td>3.510</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>13</td>
<td>11.303</td>
<td>9.254</td>
<td>1.955</td>
<td>1.00</td>
<td>0.02</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>14</td>
<td>10.358</td>
<td>9.751</td>
<td>1.004</td>
<td>1.00</td>
<td>0.02</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>15</td>
<td>9.837</td>
<td>10.691</td>
<td>1.117</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>16</td>
<td>10.156</td>
<td>8.916</td>
<td>-0.058</td>
<td>1.00</td>
<td>0.02</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>17</td>
<td>9.180</td>
<td>9.032</td>
<td>-1.140</td>
<td>1.00</td>
<td>0.02</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>18</td>
<td>9.476</td>
<td>8.372</td>
<td>-2.467</td>
<td>1.00</td>
<td>0.03</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>19</td>
<td>9.503</td>
<td>7.286</td>
<td>-2.331</td>
<td>1.00</td>
<td>0.04</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>20</td>
<td>10.470</td>
<td>8.668</td>
<td>-2.818</td>
<td>1.00</td>
<td>0.04</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>21</td>
<td>8.418</td>
<td>8.716</td>
<td>-3.525</td>
<td>1.00</td>
<td>0.03</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>22</td>
<td>8.528</td>
<td>8.041</td>
<td>-4.375</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>23</td>
<td>8.448</td>
<td>10.210</td>
<td>-3.959</td>
<td>1.00</td>
<td>0.04</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>24</td>
<td>9.439</td>
<td>10.652</td>
<td>-3.837</td>
<td>1.00</td>
<td>0.05</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>25</td>
<td>8.189</td>
<td>10.301</td>
<td>-5.015</td>
<td>1.00</td>
<td>0.05</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>26</td>
<td>7.388</td>
<td>10.894</td>
<td>-3.063</td>
<td>1.00</td>
<td>0.04</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>27</td>
<td>6.515</td>
<td>11.201</td>
<td>-3.646</td>
<td>1.00</td>
<td>0.04</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>28</td>
<td>7.773</td>
<td>11.779</td>
<td>-2.554</td>
<td>1.00</td>
<td>0.04</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>29</td>
<td>7.003</td>
<td>9.753</td>
<td>-2.084</td>
<td>1.00</td>
<td>0.02</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>30</td>
<td>5.997</td>
<td>9.861</td>
<td>-1.679</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>31</td>
<td>8.012</td>
<td>9.666</td>
<td>-0.971</td>
<td>1.00</td>
<td>0.03</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>32</td>
<td>7.767</td>
<td>10.134</td>
<td>-0.026</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Cis

REMARK Materials Studio PCisDB file
REMARK DMOL3 optimised structure, B3LYP/DNP 4.4 atomic basis set
REMARK Relative energy compared to the optimised trans conformation: ca -7.8 kJ mol⁻¹

REMARK Relative energy compared to a static trans conformation: ca -10.6 kJ mol⁻¹

<table>
<thead>
<tr>
<th>Atom</th>
<th>Number</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Charge</th>
<th>Temperature</th>
<th>Mass</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1</td>
<td>9.989</td>
<td>10.011</td>
<td>1.417</td>
<td>1.00</td>
<td>0.03</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>2</td>
<td>6.976</td>
<td>8.657</td>
<td>-2.797</td>
<td>1.00</td>
<td>0.02</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>H1B</td>
<td>3</td>
<td>6.270</td>
<td>8.696</td>
<td>-3.525</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>4</td>
<td>11.451</td>
<td>9.342</td>
<td>2.069</td>
<td>1.00</td>
<td>0.02</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>5</td>
<td>12.044</td>
<td>9.661</td>
<td>3.289</td>
<td>1.00</td>
<td>0.03</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>H2A</td>
<td>6</td>
<td>11.597</td>
<td>10.390</td>
<td>3.952</td>
<td>1.00</td>
<td>0.03</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>7</td>
<td>13.221</td>
<td>9.019</td>
<td>3.634</td>
<td>1.00</td>
<td>0.03</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
ATOM 8 H3A MOL 2 13.699 9.242 4.579 1.00 0.03 H
ATOM 9 C4 MOL 2 13.803 8.076 2.775 1.00 0.03 C
ATOM 10 H4A MOL 2 14.722 7.585 3.068 1.00 0.03 H
ATOM 11 C5 MOL 2 13.210 7.755 1.567 1.00 0.03 C
ATOM 12 H5A MOL 2 13.660 7.021 0.910 1.00 0.03 H
ATOM 13 C6 MOL 2 12.015 8.386 1.195 1.00 0.02 C
ATOM 14 C7 MOL 2 11.223 8.223 0.016 1.00 0.02 C
ATOM 15 H7A MOL 2 11.486 7.535 -0.775 1.00 0.02 H
ATOM 16 C8 MOL 2 10.110 9.015 -0.024 1.00 0.02 C
ATOM 17 C9 MOL 2 9.104 9.089 -1.074 1.00 0.02 C
ATOM 18 C10 MOL 2 9.303 8.235 -2.307 1.00 0.02 C
ATOM 19 AH10 MOL 2 9.192 7.178 -2.046 1.00 0.02 H
ATOM 20 BH10 MOL 2 10.324 8.362 -2.678 1.00 0.02 H
ATOM 21 C11 MOL 2 8.308 8.596 -3.419 1.00 0.02 C
ATOM 22 AH11 MOL 2 8.334 7.821 -4.187 1.00 0.02 H
ATOM 23 C12 MOL 2 8.552 10.018 -4.010 1.00 0.02 C
ATOM 24 AH12 MOL 2 9.591 10.333 -3.898 1.00 0.02 H
ATOM 25 BH12 MOL 2 10.331 10.030 -5.078 1.00 0.02 H
ATOM 26 C13 MOL 2 7.577 10.930 -3.227 1.00 0.02 C
ATOM 27 AH13 MOL 2 6.758 11.276 -3.862 1.00 0.02 H
ATOM 28 BH13 MOL 2 8.068 11.811 -2.812 1.00 0.02 H
ATOM 29 C14 MOL 2 7.038 9.969 -2.134 1.00 0.02 C
ATOM 30 AH14 MOL 2 6.055 10.255 -1.758 1.00 0.02 H
ATOM 31 C15 MOL 2 8.033 9.894 -1.010 1.00 0.02 C
ATOM 32 AH15 MOL 2 7.878 10.554 -0.165 1.00 0.02 H
END