Supplementary material to ”Temperature-dependent analysis of thermal motion, disorder and structures of tris(ethylenediamine)zinc(II) sulfate and tris(ethylenediamine)copper(II) sulfate”

Figure S1: Temperature evolution of the isotropic ADPs (U_{eq}) of the Zn, N and C atoms of 1.

Figure S2: Temperature evolution of the isotropic ADPs (U_{eq}) of the Cu, N and C atoms of 2.
Figure S3: Temperature evolution of the eigenvalues of the ADPs of the N1 atom of 1. λ_1 has a slope of 0.000096 Å2/K of 0.0132 Å2 at T=0 K, λ_2 has 0.000099 Å2/K and 0.0050 Å2 and λ_3 has 0.000070 Å2/K and 0.0039 Å2.
Figure S4: Temperature evolution of the eigenvalues of the translation (left axis, Å²) and libration (right axis, rad²) tensors for 1, as calculated with THMA11 [2]. At T=0 K the standard uncertainties of the intercepts of the four interpolations are drawn.
Table S1: Translational (T; Å²), librational (L; rad²) and screw-coupling (S; Å rad) tensor components of the rigid body motion at 140-290 K for 1 as calculated using THMA11 [2]. Off-diagonal values have been omitted, because they equal 0 due to symmetry.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>T_{11}</th>
<th>T_{22}</th>
<th>T_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>0.0113(4)</td>
<td>0.0113(4)</td>
<td>0.0104(6)</td>
</tr>
<tr>
<td>170</td>
<td>0.0136(3)</td>
<td>0.0136(3)</td>
<td>0.0127(6)</td>
</tr>
<tr>
<td>200</td>
<td>0.0162(3)</td>
<td>0.0162(3)</td>
<td>0.0156(5)</td>
</tr>
<tr>
<td>230</td>
<td>0.0185(3)</td>
<td>0.0185(3)</td>
<td>0.0179(5)</td>
</tr>
<tr>
<td>260</td>
<td>0.0207(3)</td>
<td>0.0207(3)</td>
<td>0.0200(5)</td>
</tr>
<tr>
<td>290</td>
<td>0.0226(3)</td>
<td>0.0226(3)</td>
<td>0.0221(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(K)</th>
<th>L_{11}</th>
<th>L_{22}</th>
<th>L_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>0.0015(3)</td>
<td>0.0015(3)</td>
<td>0.0019(3)</td>
</tr>
<tr>
<td>170</td>
<td>0.0016(2)</td>
<td>0.0016(2)</td>
<td>0.0021(3)</td>
</tr>
<tr>
<td>200</td>
<td>0.0019(2)</td>
<td>0.0019(2)</td>
<td>0.0024(2)</td>
</tr>
<tr>
<td>230</td>
<td>0.0020(2)</td>
<td>0.0020(2)</td>
<td>0.0026(2)</td>
</tr>
<tr>
<td>260</td>
<td>0.0022(2)</td>
<td>0.0022(2)</td>
<td>0.0027(2)</td>
</tr>
<tr>
<td>290</td>
<td>0.0025(2)</td>
<td>0.0025(2)</td>
<td>0.00277(19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(K)</th>
<th>S_{11}</th>
<th>S_{22}</th>
<th>S_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>0.0002(2)</td>
<td>0.0002(2)</td>
<td>-0.0005(4)</td>
</tr>
<tr>
<td>170</td>
<td>0.0001(2)</td>
<td>0.0001(2)</td>
<td>-0.0003(4)</td>
</tr>
<tr>
<td>200</td>
<td>0.00005(18)</td>
<td>0.00005(18)</td>
<td>-0.0001(3)</td>
</tr>
<tr>
<td>230</td>
<td>-0.00001(19)</td>
<td>-0.00001(19)</td>
<td>0.00000(3)</td>
</tr>
<tr>
<td>260</td>
<td>0.00002(19)</td>
<td>0.00002(19)</td>
<td>-0.0001(3)</td>
</tr>
<tr>
<td>290</td>
<td>-0.0001(2)</td>
<td>-0.0001(2)</td>
<td>0.0001(3)</td>
</tr>
</tbody>
</table>
Table S2: Translational (T; Å²), librational (L; rad²) and screw-coupling (S; Å rad) tensor components of the rigid body motion at 190-270 K for 2 as calculated using THMA11 [2]. Off-diagonal values have been omitted, because they equal 0 due to symmetry.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>T_{11}</th>
<th>T_{22}</th>
<th>T_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>0.0181(9)</td>
<td>0.0181(9)</td>
<td>0.0138(15)</td>
</tr>
<tr>
<td>210</td>
<td>0.0193(9)</td>
<td>0.0193(9)</td>
<td>0.0152(15)</td>
</tr>
<tr>
<td>230</td>
<td>0.0207(9)</td>
<td>0.0207(9)</td>
<td>0.0164(15)</td>
</tr>
<tr>
<td>250</td>
<td>0.0220(8)</td>
<td>0.0220(8)</td>
<td>0.0178(15)</td>
</tr>
<tr>
<td>270</td>
<td>0.0236(8)</td>
<td>0.0236(8)</td>
<td>0.0190(15)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(K)</th>
<th>L_{11}</th>
<th>L_{22}</th>
<th>L_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>0.0021(7)</td>
<td>0.0021(7)</td>
<td>0.0025(8)</td>
</tr>
<tr>
<td>210</td>
<td>0.0022(7)</td>
<td>0.0022(7)</td>
<td>0.0025(8)</td>
</tr>
<tr>
<td>230</td>
<td>0.0023(7)</td>
<td>0.0023(7)</td>
<td>0.0027(8)</td>
</tr>
<tr>
<td>250</td>
<td>0.0025(7)</td>
<td>0.0025(7)</td>
<td>0.0027(7)</td>
</tr>
<tr>
<td>270</td>
<td>0.0027(7)</td>
<td>0.0027(7)</td>
<td>0.0029(7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(K)</th>
<th>S_{11}</th>
<th>S_{22}</th>
<th>S_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>-0.0001(5)</td>
<td>-0.0001(5)</td>
<td>0.0001(11)</td>
</tr>
<tr>
<td>210</td>
<td>-0.0000(5)</td>
<td>-0.0000(5)</td>
<td>0.0001(11)</td>
</tr>
<tr>
<td>230</td>
<td>-0.0000(5)</td>
<td>-0.0000(5)</td>
<td>0.0001(11)</td>
</tr>
<tr>
<td>250</td>
<td>-0.0001(5)</td>
<td>-0.0001(5)</td>
<td>0.0001(11)</td>
</tr>
<tr>
<td>270</td>
<td>-0.0000(5)</td>
<td>-0.0000(5)</td>
<td>0.0001(11)</td>
</tr>
</tbody>
</table>

Table S3: Translational (T; Å2), librational (L; rad2) and screw-coupling (S; Å·rad) tensor components of the rigid body motion at 140-290 K for 1 as calculated using NKA [1]. Off-diagonal values have been omitted, because they equal 0 due to symmetry.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>T$_{11}$</th>
<th>T$_{22}$</th>
<th>T$_{33}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>0.01080(10)</td>
<td>0.01080(10)</td>
<td>0.01090(14)</td>
</tr>
<tr>
<td>170</td>
<td>0.01307(12)</td>
<td>0.01307(12)</td>
<td>0.01319(19)</td>
</tr>
<tr>
<td>200</td>
<td>0.01535(14)</td>
<td>0.01535(14)</td>
<td>0.0155(2)</td>
</tr>
<tr>
<td>230</td>
<td>0.01763(17)</td>
<td>0.01763(17)</td>
<td>0.0178(3)</td>
</tr>
<tr>
<td>260</td>
<td>0.01991(19)</td>
<td>0.01991(19)</td>
<td>0.0201(4)</td>
</tr>
<tr>
<td>290</td>
<td>0.0222(2)</td>
<td>0.0222(2)</td>
<td>0.0224(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(K)</th>
<th>L$_{11}$</th>
<th>L$_{22}$</th>
<th>L$_{33}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>0.00094(4)</td>
<td>0.00094(4)</td>
<td>0.00097(4)</td>
</tr>
<tr>
<td>170</td>
<td>0.00112(4)</td>
<td>0.00112(4)</td>
<td>0.00117(5)</td>
</tr>
<tr>
<td>200</td>
<td>0.00131(5)</td>
<td>0.00131(5)</td>
<td>0.00137(7)</td>
</tr>
<tr>
<td>230</td>
<td>0.00150(6)</td>
<td>0.00150(6)</td>
<td>0.00157(9)</td>
</tr>
<tr>
<td>260</td>
<td>0.00169(7)</td>
<td>0.00169(7)</td>
<td>0.00177(11)</td>
</tr>
<tr>
<td>290</td>
<td>0.00188(7)</td>
<td>0.00188(7)</td>
<td>0.00197(12)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(K)</th>
<th>S$_{11}$</th>
<th>S$_{22}$</th>
<th>S$_{33}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>0.0000(4)</td>
<td>-0.0000(4)</td>
<td>0.0010(4)</td>
</tr>
<tr>
<td>170</td>
<td>0.0000(4)</td>
<td>-0.0000(4)</td>
<td>0.0012(5)</td>
</tr>
<tr>
<td>200</td>
<td>0.0000(4)</td>
<td>-0.0000(4)</td>
<td>0.0014(5)</td>
</tr>
<tr>
<td>230</td>
<td>0.0000(4)</td>
<td>-0.0000(4)</td>
<td>0.0016(5)</td>
</tr>
<tr>
<td>260</td>
<td>0.0000(4)</td>
<td>-0.0000(4)</td>
<td>0.0019(5)</td>
</tr>
<tr>
<td>290</td>
<td>0.0000(4)</td>
<td>-0.0000(4)</td>
<td>0.0021(6)</td>
</tr>
</tbody>
</table>
Table S4: Translational (T; Å2), librational (L; rad2) and screw-coupling (S; Å·rad) tensor components of the rigid body motion at 190-270 K for 2 as calculated using NKA [1]. Off-diagonal values have been omitted, because they equal 0 due to symmetry.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>T$_{11}$</th>
<th>T$_{22}$</th>
<th>T$_{33}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>0.01353(16)</td>
<td>0.01353(16)</td>
<td>0.0119(2)</td>
</tr>
<tr>
<td>210</td>
<td>0.01494(18)</td>
<td>0.01494(18)</td>
<td>0.0132(3)</td>
</tr>
<tr>
<td>230</td>
<td>0.01635(19)</td>
<td>0.01635(19)</td>
<td>0.0144(3)</td>
</tr>
<tr>
<td>250</td>
<td>0.0178(2)</td>
<td>0.0178(2)</td>
<td>0.0156(3)</td>
</tr>
<tr>
<td>270</td>
<td>0.0192(2)</td>
<td>0.0192(2)</td>
<td>0.0169(3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(K)</th>
<th>L$_{11}$</th>
<th>L$_{22}$</th>
<th>L$_{33}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>0.00167(6)</td>
<td>0.00167(6)</td>
<td>0.00098(7)</td>
</tr>
<tr>
<td>210</td>
<td>0.00184(7)</td>
<td>0.00184(6)</td>
<td>0.00107(7)</td>
</tr>
<tr>
<td>230</td>
<td>0.00201(7)</td>
<td>0.00201(7)</td>
<td>0.00117(8)</td>
</tr>
<tr>
<td>250</td>
<td>0.00218(8)</td>
<td>0.00218(8)</td>
<td>0.00127(9)</td>
</tr>
<tr>
<td>270</td>
<td>0.00235(8)</td>
<td>0.00235(8)</td>
<td>0.00137(10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(K)</th>
<th>S$_{11}$</th>
<th>S$_{22}$</th>
<th>S$_{33}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>0.0000(5)</td>
<td>0.0000(5)</td>
<td>-0.0000(6)</td>
</tr>
<tr>
<td>210</td>
<td>0.0000(5)</td>
<td>0.0000(5)</td>
<td>-0.0000(6)</td>
</tr>
<tr>
<td>230</td>
<td>0.0000(5)</td>
<td>0.0000(5)</td>
<td>-0.0000(6)</td>
</tr>
<tr>
<td>250</td>
<td>0.0000(5)</td>
<td>0.0000(5)</td>
<td>-0.0000(6)</td>
</tr>
<tr>
<td>270</td>
<td>0.0000(5)</td>
<td>0.0000(5)</td>
<td>-0.0000(6)</td>
</tr>
</tbody>
</table>
References
