Supporting information for article:

Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. II. The Fourier transform method

Daniel Nguyen and Anatoliy Volkov
S1. Plane wave expansion of \(\exp(\pm i \mathbf{k} \cdot \mathbf{r}) \) in terms of the associated Legendre polynomials

Define vectors \(\mathbf{r} \) and \(\mathbf{k} \) in the spherical coordinate system:

\[
\mathbf{r} \equiv (r, \theta, \phi) \tag{1}
\]
\[
\mathbf{k} \equiv (k, \bar{\theta}, \bar{\phi}) \tag{2}
\]

The plane wave (Rayleigh) expansion for \(\exp(\pm i \mathbf{k} \cdot \mathbf{r}) \) in terms of complex spherical harmonics \(Y_l^m(\theta, \phi) \) is given by (Geller, 1962; Weissbluth, 1978):

\[
\exp(\pm i \mathbf{k} \cdot \mathbf{r}) = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(\frac{(-1)^l (l+m)!}{(l-m)!} \right) P_l^{|m|}(\cos \theta) e^{im\phi} \tag{3}
\]

where symbol * denotes the complex-conjugate, and \(j_\lambda(z) \) is the spherical Bessel function of the first kind (Arfken, 1985; Olver et al., 2018). The complex spherical harmonic function \(Y_l^m(\theta, \phi) \) for \(l \geq 0 \) and \(-l \leq m \leq l\) is defined as (Weissbluth, 1978; Weniger & Steinborn, 1982; Homeier & Steinborn, 1996)

\[
Y_l^m(\theta, \phi) = (-1)^{m+|m|} \sqrt{\frac{(2l+1)(l-|m|)!}{4\pi (l+|m|)!}} P_l^{|m|}(\cos \theta) e^{im\phi} \tag{4}
\]

where functions \(P_l^m(x) \) are the associated Legendre polynomials (Press et al, 1992; Tam, 2008; Wolfram Research, 2018),

\[
P_l^{|m|}(x) = (-1)^{|m|} (1-x^2)^{|m|/2} \frac{d^{|m|} P_l(x)}{dx^{|m|}} \tag{5}
\]
\[
P_l^{-|m|}(x) = (-1)^{|m|} (l-|m|)! (l+|m|)! \frac{d^{-|m|} P_l(x)}{dx^{-|m|}} \tag{6}
\]

and functions \(P_l(x) \) are the ordinary (unassociated) Legendre polynomials (Press et al, 1992; Tam, 2008; Wolfram Research, 2018). In this study we follow the notation used in Mathematica (Press et al, 1992; Tam, 2008; Wolfram Research, 2018) according to which the associated Legendre polynomials include the Condon-Shortley phase \((-1)^{|m|} = (-1)^m\) (Condon & Shortley, 1959). Note that equation (4) is valid for both the positive and negative values of \(m \), and is consistent with Mathematica’s function \texttt{SphericalHarmonicY}[l, m, \theta, \phi] \ (Wolfram Research, 2018).

The associated Legendre polynomials for the positive and negative values of \(m \), equations (5) and (6), are related to each other via the following relationship

\[
P_l^m(x) = (-1)^m \frac{(l+m)!}{(l-m)!} P_l^{-m}(x) \tag{7}
\]

which is valid regardless whether \(m \) is positive or negative. Equations (5), (6) and (7) are consistent with Mathematica’s function \texttt{LegendreP}[l, m, x] \ (Wolfram Research, 2018).

Expanding the complex-conjugate spherical harmonic function \(Y_l^m(\bar{\theta}, \bar{\phi}) \) in terms of \(P_l^{-m}(\cos \theta) \).
\[Y_{\lambda}^{\nu} (\theta, \phi) = (-1)^{\mu + |\nu|} \sqrt{\frac{(2\lambda + 1)(\lambda - \mu)!}{4\pi (\lambda + \mu)!}} \frac{(-1)^{|\mu|} (\lambda + \mu)!}{(\lambda - \mu)!} P_{\lambda}^{-\mu}(\cos \theta) e^{-i\mu\phi} \]

(8)

and substituting it into the product \(Y_{\lambda}^{\mu}(\theta, \phi)Y_{\lambda}^{\nu}(\bar{\theta}, \bar{\phi}) \) we get

\[Y_{\lambda}^{\mu}(\theta, \phi)Y_{\lambda}^{\nu}(\bar{\theta}, \bar{\phi}) = \]

\[(-1)^{\mu + |\nu|} \frac{(2\lambda + 1)(\lambda - \mu)!}{4\pi (\lambda + \mu)!} P_{\lambda}^{\mu}(\cos \theta) e^{-i\mu\phi} \]

\[\times (-1)^{|\nu|} \frac{(2\lambda + 1)(\lambda - \mu)!}{4\pi (\lambda + \mu)!} (-1)^{|\mu|} \frac{(-1)^{|\mu|} (\lambda + \mu)!}{(\lambda - \mu)!} P_{\lambda}^{-\mu}(\cos \bar{\theta}) e^{-i\mu\bar{\phi}} = \]

\[(-1)^{|\nu|} \frac{(2\lambda + 1)(\lambda - \mu)!}{4\pi (\lambda + \mu)!} P_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) e^{i\mu(\phi - \bar{\phi})} \]

(9)

Inserting this result into the expansion for \(\exp(\pm i\mathbf{k} \cdot \mathbf{r}) \) gives

\[\exp(\pm i\mathbf{k} \cdot \mathbf{r}) = 4\pi \sum_{\lambda=0}^{\infty} \left(\sum_{\mu=-\lambda}^{\lambda} \left(\frac{(-1)^{|\mu|} (\lambda + \mu)!}{4\pi (\lambda + \mu)!} P_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) e^{i\mu(\phi - \bar{\phi})} \right) \right) \]

(10)

Cancelling out the two \(4\pi \) factors, moving the \(\mu \)-independent terms out of the inner sum, and applying Euler’s formula \(e^{ix} = \cos x + i \sin x \) results in

\[\exp(\pm i\mathbf{k} \cdot \mathbf{r}) = \sum_{\lambda=0}^{\infty} \left(2\lambda + 1 \right) \frac{(-1)^{|\nu|} (\lambda + \mu)!}{4\pi (\lambda + \mu)!} P_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) \left(\cos(\mu(\phi - \bar{\phi})) + i \sin(\mu(\phi - \bar{\phi})) \right) \]

(11)

Consider the expanded inner sum, and note that terms with both the positive and negative \(\mu \) are present:

\[\sum_{\mu=-\lambda}^{\lambda} \left(\frac{(-1)^{|\mu|} (\lambda + \mu)!}{4\pi (\lambda + \mu)!} P_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) \cos(\mu(\phi - \bar{\phi})) + i P_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) \sin(\mu(\phi - \bar{\phi})) \right) \]

(12)

Using the well-known trigonometric identities \(\sin(-x) = -\sin(x) \) and \(\cos(-x) = \cos(x) \), and expressing the associated Legendre polynomial with \(\mu < 0 \) in terms of that with \(\mu > 0 \) via equation (6),

\[P_{\lambda}^{-|\mu|}(\cos \theta) = (-1)^{|\mu|} \frac{(\lambda - |\mu|)!}{(\lambda + |\mu|)!} P_{\lambda}^{\mu}(\cos \theta) \]

(13)

we get for the \(\sin(\ldots) \) terms:

\(\mu > 0 \):

\[iP_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) \sin(\mu(\phi - \bar{\phi})) = (-1)^{|\mu|} \frac{(\lambda + |\mu|)!}{(\lambda + |\mu|)!} P_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) \sin(\mu(\phi - \bar{\phi})) \]

\(\mu < 0 \):

\[-iP_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) \sin(\mu(\phi - \bar{\phi})) = (-1)^{|\mu|} \frac{(\lambda - |\mu|)!}{(\lambda + |\mu|)!} P_{\lambda}^{\mu}(\cos \theta) P_{\lambda}^{-\mu}(\cos \bar{\theta}) \sin(\mu(\phi - \bar{\phi})) \]

\(\mu = 0 \):

\[iP_{\lambda}^{0}(\cos \theta) P_{\lambda}^{0}(\cos \bar{\theta}) \sin(0(\phi - \bar{\phi})) = 0 \]
It follows that the sum of all the sin(...) terms in equation (12) is zero, and thus they can be safely eliminated from the summation. For the cos(...) terms,

\[
\mu > 0 : P_{\lambda}^{\lambda|\mu|}(\cos \theta)P_{\lambda}^{-|\mu|}(\cos \tilde{\theta}) \cos(\mu\lambda(\phi - \tilde{\phi})) = (-1)^{|\mu|} \frac{(\lambda - |\mu|)l!}{(\lambda + |\mu|)!} P_{\lambda}^{|\mu|}(\cos \theta)P_{\lambda}^{-|\mu|}(\cos \tilde{\theta}) \cos(\mu\lambda(\phi - \tilde{\phi}))
\]

\[
\mu < 0 : P_{\lambda}^{-|\mu|}(\cos \theta)P_{\lambda}^{\lambda|\mu|}(\cos \tilde{\theta}) \cos(-\mu\lambda(\phi - \tilde{\phi})) = (-1)^{|\mu|} \frac{(\lambda - |\mu|)l!}{(\lambda + |\mu|)!} P_{\lambda}^{\lambda|\mu|}(\cos \theta)P_{\lambda}^{-|\mu|}(\cos \tilde{\theta}) \cos(-\mu\lambda(\phi - \tilde{\phi}))
\]

\[
\mu = 0 : P_{\lambda}^{0}(\cos \theta)P_{\lambda}^{0}(\cos \tilde{\theta}) \cos(0(\phi - \tilde{\phi})) = P_{\lambda}^{0}(\cos \theta)P_{\lambda}^{0}(\cos \tilde{\theta})
\]

Because terms for the positive and negative \(\mu\) are the same, we can limit the summation over \(\mu\) to the non-negative values only:

\[
\exp(\pm ik \cdot r) = \sum_{\lambda=0}^{\infty} (2\lambda + 1)(\pm i)^{\lambda} j_{\lambda}(kr) \\
\times \sum_{\mu=0}^{l} \epsilon_{\mu}(-1)^{|\mu|} \frac{(\lambda - |\mu|)!}{(\lambda + |\mu|)!} P_{\lambda}^{|\mu|}(\cos \theta)P_{\lambda}^{-|\mu|}(\cos \tilde{\theta}) \cos(\mu\lambda(\phi - \tilde{\phi}))
\]

(14)

where \(\epsilon_{\mu}\) is defined as in Morse & Feshbach (1953) and Geller (1963)

\[
\epsilon_{0} = 1 \quad \text{for} \quad \mu = 0, \quad \text{and} \quad \epsilon_{\mu} = 2 \quad \text{for} \quad \mu > 0, \quad \text{or simply} \quad \epsilon_{\mu} = 2 - \delta_{\mu,0}
\]

Note that there is only one \(\mu = 0\) term, while all the \(\mu > 0\) terms need to be counted twice. Finally, since \((-1)^{|\mu|}(-1)^{|\mu|} = 1\), the desired expression for \(\exp(\pm ik \cdot r)\) becomes

\[
\exp(\pm ik \cdot r) = \sum_{\lambda=0}^{\infty} (2\lambda + 1)(\pm i)^{\lambda} j_{\lambda}(kr) \\
\times \sum_{\mu=0}^{l} \epsilon_{\mu} \frac{(\lambda - |\mu|)!}{(\lambda + |\mu|)!} P_{\lambda}^{|\mu|}(\cos \theta)P_{\lambda}^{-|\mu|}(\cos \tilde{\theta}) \cos(\mu\lambda(\phi - \tilde{\phi}))
\]

(15)

which agrees with the expression given for example in Morse & Feshbach (1953), Geller (1963) and Coppens (1997). Note that since \(\cos(\mu\lambda(\phi - \tilde{\phi})) = \cos(-\mu\lambda(\phi - \tilde{\phi})) = \cos(\mu\lambda(\tilde{\phi} - \phi))\), it is clear that the complex conjugation can be freely exchanged between the two spherical harmonic functions.
S2. Fourier transform of Slater-type function with real spherical harmonics

The unnormalized Slater-type function (Slater, 1932) is given by

\[\chi(r, \theta, \phi) = r^{n-1} e^{-\epsilon r} y_n^m(\theta, \phi) \]

where all the terms are as defined in the main body of the manuscript. The Fourier transform of \(\chi(r) \), \(F(k) \), is (Geller, 1963)

\[F(k) = \int \exp(i k \cdot r) \chi(r) \, dr \]

Expanding the \(\exp(i k \cdot r) \) term as described in Section S1, defining \(y_n^m(\theta, \phi) \) in terms of the associated Legendre polynomials (see equations (3) and (4) in the main body of the manuscript), and switching to the spherical coordinate system we get:

\[F(k) = \int_0^{2\pi} \int_0^\infty \int_0^\infty (2\lambda + 1) i^\lambda j_\lambda(kr) \sum_{\mu=0}^\lambda \epsilon_\mu (\lambda - |\mu|)! (\lambda + |\mu|)! P_\lambda^{i|\mu|}(\cos \theta) P_\lambda^{j|\mu|}(\cos \theta) \cos(|\mu|(\phi - \tilde{\phi})) \times r^{-1} e^{-\epsilon r} j_\lambda(kr) \, dr \]

Rearranging the integrals and the sums gives

\[F(k) = (-1)^{|m|} N_{l,m} \sum_{\lambda=0}^\infty (2\lambda + 1) i^\lambda \sum_{\mu=0}^\lambda \epsilon_\mu (\lambda - |\mu|)! (\lambda + |\mu|)! P_\lambda^{i|\mu|}(\cos \theta) P_\lambda^{j|\mu|}(\cos \theta) \int_0^\infty r^{-2} e^{-\epsilon r} j_\lambda(kr) \, dr \]

The radial integral can be simplified to

\[\int_0^\infty r^{-2} e^{-\epsilon r} j_\lambda(kr) \, dr = \int_0^\infty r^{n+1} e^{-\epsilon r} j_\lambda(kr) \, dr \]

The angular integral over \(\phi \) is (Geller, 1963)

\[\int_0^{2\pi} \cos(|\mu|(\phi - \tilde{\phi})) \frac{\cos(|m|\phi)}{\sin(|m|\phi)} \, d\phi = \frac{2\pi}{\epsilon_\mu} \cos(|m|\tilde{\phi}) \sin(|m|\phi) \delta_{|\mu|,|m|} \]

where \(\epsilon_\mu \) is defined as in Morse & Feshbach (1953) and Geller (1963)

\[\epsilon_0 = 1 \text{ for } \mu = 0, \text{ and } \epsilon_\mu = 2 \text{ for } \mu > 0, \text{ or simply } \epsilon_\mu = 2 - \delta_{\mu,0} \]

Since the \(\phi \) integral is non-zero only if \(m = |\mu| \), the \(\theta \) integral simplifies to (Geller, 1963):

\[\int_0^\pi P_\lambda^{i|\mu|}(\cos \theta) P_\lambda^{j|\mu|}(\cos \theta) \sin \theta \, d\theta = \frac{2}{2l + 1} \frac{(l + |m|)!}{(l - |m|)!} \delta_{\lambda,l} \]
Thus, the only term that survives in the double sum is the one with $\lambda = l$ and $|\mu| = |m|$. As such, the integral $F_{nlm}(k)$ becomes:

$$ F(k) = (-1)^{|m|} N_{l,m} f_{l}^{(m)}(\cos \theta) \left\{ \frac{\cos(|m|\phi)}{\sin(|m|\phi)} \right\} 4\pi i l \int_{0}^{\infty} r^{n+1} e^{-\zeta r j_{l}(kr)} dr $$

(23)

Because

$$ y_{l}^{m}(\theta, \phi) = (-1)^{|m|} N_{l,m} f_{l}^{(m)}(\cos \theta) \left\{ \frac{\cos(|m|\phi)}{\sin(|m|\phi)} \right\} $$

(24)

the final expression for $F(k)$ is

$$ F(k) = y_{l}^{m}(\theta, \phi) 4\pi i l \int_{0}^{\infty} r^{n+1} e^{-\zeta r j_{l}(kr)} dr = f_{nl}(k) y_{l}^{m}(\theta, \phi) $$

(25)

where

$$ f_{nl}(k) = 4\pi i l \int_{0}^{\infty} r^{n+1} e^{-\zeta r j_{l}(kr)} dr $$

(26)

which agrees with expressions given by Geller (1963), Silverstone (1966), Coppens (1997) and others.

S3. The angular integral $d_{abl}(\theta, \phi)$

The total angular integral $d_{abl}(\theta, \phi)$ is defined as:

$$ d_{abl}(\theta, \phi) = \frac{(-1)^{l}(2\lambda + 1)}{4\pi} \times \sum_{\mu=0}^{2\lambda} e_{\mu} \frac{(\lambda - |\mu|)!}{(\lambda + |\mu|)!} P_{l}^{(\lambda)}(\cos \theta) \int_{0}^{2\pi} \int_{0}^{\pi} y_{l}^{m_{a}}(\theta, \phi) y_{l}^{m_{b}}(\theta, \phi) P_{l}^{(\lambda)}(\cos \theta) \cos(|\mu|/\phi - \phi)) \sin \theta \, d\theta
\d\phi $$

(27)

Introduction of the auxiliary angular integral $\Omega_{l_{a},m_{a},l_{b},m_{b},\lambda,\mu}(\phi)$.

$$ \Omega_{l_{a},m_{a},l_{b},m_{b},\lambda,\mu}(\phi) = \sum_{\mu=0}^{2\lambda} e_{\mu} \frac{(\lambda - |\mu|)!}{(\lambda + |\mu|)!} P_{l}^{(\lambda)}(\cos \theta) \sin \theta \, d\theta
\d\phi $$

(28)

simplifies equation (27) as follows:

$$ d_{abl}(\theta, \phi) = \frac{(-1)^{l}(2\lambda + 1)}{4\pi} \sum_{\mu=0}^{2\lambda} e_{\mu} \frac{(\lambda - |\mu|)!}{(\lambda + |\mu|)!} P_{l}^{(\lambda)}(\cos \theta) \Omega_{l_{a},m_{a},l_{b},m_{b},\lambda,\mu}(\phi) $$

(29)

Thus, the problem is reduced to evaluation of the integral $\Omega_{l_{a},m_{a},l_{b},m_{b},\lambda,\mu}(\phi)$. Expanding the real spherical harmonic functions in terms of the associated Legendre polynomials, we get:

$$ \Omega_{l_{a},m_{a},l_{b},m_{b},\lambda,\mu}(\phi) = \frac{(-1)^{l}|m_{a}|+|m_{b}|}{N_{l_{a},m_{a}} N_{l_{b},m_{b}}} \int_{0}^{\pi} p_{l_{a}}^{m_{a}}(\cos \theta) p_{l_{b}}^{m_{b}}(\cos \theta) p_{l}^{(\lambda)}(\cos \theta) \sin \theta \, d\theta $$

(30)
where the normalization factors \(N_{t,\lambda} \) and \(N_{b,\mu} \) are defined via equation (4) in the main body of the manuscript. Representing the integrals over \(\Phi \) and \(\tilde{\Phi} \) as

\[
\Phi_{m_a,m_b,|\lambda|}(\phi) = \int_0^{2\pi} \left(\frac{\cos(|m_a|\Phi)}{\sin(|m_a|\Phi)} \right) \left(\frac{\cos(|m_b|\Phi)}{\sin(|m_b|\Phi)} \right) \cos(|\lambda|(\phi - \Phi)) \, d\Phi
\]

and

\[
\Theta_{t,\lambda,m_a,l_b,m_b,\lambda,|\mu|} = \int_0^{\pi} p_1^{m_a} |\cos \theta| p_2^{m_b} |\cos \theta| p_3^{|\mu|} |\cos \theta| \sin \theta \, d\theta,
\]

the expressions for \(\Omega_{t,\lambda,m_a,l_b,m_b,\lambda,|\mu|} \) and \(d_{ab\lambda}(\theta, \phi) \) become:

\[
\Omega_{t,\lambda,m_a,l_b,m_b,\lambda,|\mu|} = (-1)^{|m_a|+|m_b|} N_{t,\lambda} N_{b,\mu} \Phi_{m_a,m_b,|\lambda|}(\phi) \Theta_{t,\lambda,m_a,l_b,m_b,\lambda,|\mu|}
\]

\[
d_{ab\lambda}(\theta, \phi) = \frac{(-1)^{|m_a|+|m_b|+\lambda+1}}{4\pi} N_{t,\lambda} N_{b,\mu} \sum_{\mu=0}^{\lambda} \epsilon_{\mu} \frac{(\lambda - |\mu|)!}{(\lambda + |\mu|)!} p_1^{m_a} |\cos \theta| p_2^{m_b} |\cos \theta| p_3^{\lambda} |\cos \theta| \sin (|\mu|\theta) \Phi_{m_a,m_b,|\lambda|}(\phi) \Theta_{t,\lambda,m_a,l_b,m_b,\lambda,|\mu|}
\]

S3.1. The integral \(\Phi_{m_a,m_b,|\lambda|}(\phi) \)

The integral over \(\tilde{\Phi} \), \(\Phi_{m_a,m_b,|\lambda|}(\phi) \),

\[
\Phi_{m_a,m_b,|\lambda|}(\phi) = \int_0^{2\pi} \left(\frac{\cos(|m_a|\Phi)}{\sin(|m_a|\Phi)} \right) \left(\frac{\cos(|m_b|\Phi)}{\sin(|m_b|\Phi)} \right) \cos(|\lambda|(\phi - \Phi)) \, d\Phi
\]

can be evaluated by expanding \(\cos(|\lambda|(\phi - \Phi)) \) as

\[
\cos(|\lambda|(\phi - \Phi)) = \cos(|\lambda\phi - |\lambda|\Phi) = \cos(|\lambda\phi|) \cos(|\lambda|\Phi) + \sin(|\lambda\phi|) \sin(|\lambda|\Phi)
\]

This separates the integral \(\Phi_{m_a,m_b,|\lambda|}(\phi) \) into two terms:

\[
\Phi_{m_a,m_b,|\lambda|}(\phi) = \cos(|\lambda\phi|) \Phi_{m_a,m_b,|\lambda|}^c(\phi) + \sin(|\lambda\phi|) \Phi_{m_a,m_b,|\lambda|}^s(\phi)
\]

where

\[
\Phi_{m_a,m_b,|\lambda|}^c(\phi) = \int_0^{2\pi} \left(\frac{\cos(|m_a|\Phi)}{\sin(|m_a|\Phi)} \right) \left(\frac{\cos(|m_b|\Phi)}{\sin(|m_b|\Phi)} \right) \cos(|\lambda\phi|) \, d\Phi
\]

\[
\Phi_{m_a,m_b,|\lambda|}^s(\phi) = \int_0^{2\pi} \left(\frac{\cos(|m_a|\Phi)}{\sin(|m_a|\Phi)} \right) \left(\frac{\cos(|m_b|\Phi)}{\sin(|m_b|\Phi)} \right) \sin(|\lambda\phi|) \, d\Phi
\]
The two integrals are very similar, and can be described by the general integral Φ'_{m_1,m_2,m_3}:

$$
\Phi'_{m_a,m_b,m_c} = \int_0^{2\pi} \left(\frac{\cos(|m_a|\phi)}{\sin(|m_a|\phi)} \right) \left(\frac{\cos(|m_b|\phi)}{\sin(|m_b|\phi)} \right) \left(\frac{\cos(|m_c|\phi)}{\sin(|m_c|\phi)} \right) d\phi
$$

(40)

The integral Φ'_{m_a,m_b,m_c} is non-zero only if the following two conditions are met:

$$
|m_c| \in \{|m_a| - |m_b|, |m_a| + |m_b|\}
$$

(41)

$$
\varsigma_c = s_a s_b
$$

(42)

where

$$
s_a = \begin{cases} +1 & \text{if } m_a \geq 0 \\ -1 & \text{if } m_a < 0 \end{cases} \quad s_b = \begin{cases} +1 & \text{if } m_b \geq 0 \\ -1 & \text{if } m_b < 0 \end{cases} \quad s_c = \begin{cases} +1 & \text{if } m_c \geq 0 \\ -1 & \text{if } m_c < 0 \end{cases}
$$

(43)

Thus, the summation over μ in expressions (27), (29) and (34) for a given λ is limited to

$$
|\mu| \in \{|m_a| - |m_b|, |m_a| + |m_b|\} \quad \text{and} \quad |\mu| \leq \lambda
$$

(44)

The final expression for integral $\Phi_{m_a,m_b,|\lambda|}(\phi)$ is

$$
\Phi_{m_a,m_b,|\lambda|}(\phi) = \cos(|\mu|\phi) \Phi'_{m_a,m_b,|\lambda|} + \sin(|\mu|\phi) \Phi'_{m_a,m_b,|\lambda|}
$$

(45)

where the numerical values of integral Φ'_{m_a,m_b,m_c} for the allowed values of m_a, m_b, and m_c are:

1) If $m_a = m_b = m_c = 0$, $\Phi'_{m_a,m_b,m_c} = 2\pi$

2) If ($m_a = 0$ and $s_b s_c > 0$) or ($m_b = 0$ and $s_a s_c > 0$) or ($m_c = 0$ and $s_a s_b > 0$),

$$
\Phi'_{m_a,m_b,m_c} = \pi
$$

3) Define $\eta_1 = \delta_{|m_a| - |m_b| - |m_c|,0} \frac{\pi}{2}$, $\eta_2 = \delta_{|m_a| + |m_b| - |m_c|,0} \frac{\pi}{2}$, $\eta_3 = \delta_{|m_a| - |m_b| + |m_c|,0} \frac{\pi}{2}$, and $\eta_4 = \delta_{|m_a| + |m_b| + |m_c|,0} \frac{\pi}{2}$.

a) If $m_a > 0$ and $m_b > 0$ and $m_c > 0$, $\Phi'_{m_a,m_b,m_c} = \eta_1 + \eta_2 + \eta_3 + \eta_4$

b) If $m_a > 0$ and $m_b < 0$ and $m_c < 0$, $\Phi'_{m_a,m_b,m_c} = -\eta_1 + \eta_2 + \eta_3 - \eta_4$

c) If $m_a < 0$ and $m_b > 0$ and $m_c < 0$, $\Phi'_{m_a,m_b,m_c} = \eta_1 + \eta_2 - \eta_3 - \eta_4$

d) If $m_a < 0$ and $m_b < 0$ and $m_c > 0$, $\Phi'_{m_a,m_b,m_c} = \eta_1 - \eta_2 + \eta_3 - \eta_4$
S3.2. The integral $\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|}$

The integral over $\bar{\theta}$,

$$\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = \int_0^\pi p_{l_a}^{|m_a|}(\cos \bar{\theta})p_{l_b}^{|m_b|}(\cos \bar{\theta})P_\lambda^{|\mu|}(\cos \bar{\theta}) \sin \bar{\theta} \, d\bar{\theta}$$

(46)

is an overlap integral over three associated Legendre polynomials. It is known in quantum mechanics as the “Gaunt integral”. Solutions for this integral haven been given by Gaunt (1929), Racah (1942), Condon & Shortley (1959), Slater (1960), and recently by Dong & Lemus (2002). The Gaunt integral must satisfy the following conditions (Slater, 1960):

a) l_a, l_b, and λ satisfy the so-called “triangular condition”, i.e.

$$|l_a - l_b| \leq \lambda \leq l_a + l_b$$

(47)

b) the sum of l_a, l_b, and λ is an even number

$$l_a + l_b + \lambda = 2n$$

(48)

where n is an integer.

c) the largest of $|m_a|$, $|m_b|$ and $|\mu|$ is the sum of the other two values; note that this condition is automatically satisfied for all non-zero values of the integral $\Phi_{m_a,m_b,|\mu|}(\phi)$.

It follows that the summation over λ in the expression for $I^{(N)}(r)$ (equation 28 in the main body of the manuscript) is limited to the following terms:

$$\lambda \in \{l_a + l_b, l_a + l_b - 2, \ldots , |l_a - l_b|\}$$

(49)

When the non-zero conditions are satisfied, the solutions for integral $\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|}$ are (Dong & Lemus, 2002):

1) If $|\mu|=|m_a| + |m_b|$,

$$\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = 2(-1)^{|\mu|} \left(\frac{(l_a+|m_a|)(l_b+|m_b|)(\lambda+|\mu|)!}{(l_a-|m_a|)(l_b-|m_b|)(\lambda-|\mu|)!} \right)^{1/2} \binom{\lambda}{|\mu|} \Theta'_{l_a,m_a,l_b,m_b,\lambda,|\mu|}$$

(50)

where $\binom{\lambda}{|\mu|}$ and $\binom{l_a}{|m_a|}$ are the 3-j symbols (Edmonds, 1957). Denoting

$$\Theta'_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = 2(-1)^{|\mu|} \binom{l_a}{|m_a|} \binom{l_b}{|m_b|} \binom{\lambda}{|\mu|}$$

(51)

we get for $\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|}$:

$$\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = \frac{(l_a + |m_a|)! (l_b + |m_b|)! (\lambda + |\mu|)!}{(l_a - |m_a|)! (l_b - |m_b|)! (\lambda - |\mu|)!}^{1/2} \Theta'_{l_a,m_a,l_b,m_b,\lambda,|\mu|}$$

(52)
2) If \(|\mu| = |m_a| - |m_b| \),

\[
\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = 2(-1)^{\xi-|m_a|+|m_b|} \binom{l_a + |m_a|}{l_a - |m_a|} \binom{l_b + |m_b|}{l_b - |m_b|} \frac{1}{(l_a + |m_a|)! (l_b + |m_b|)! (\lambda + |\mu|)! (\lambda - |\mu|)!} \frac{l_a}{0} \frac{l_b}{0} \frac{\lambda}{0} \frac{|m_a|}{|m_b|} \frac{|m_b|}{|m_a|} \frac{\lambda}{\lambda}
\]

(53)

where \((\text{Dong} \& \text{Lemus}, 2002)\)

\[
\xi = \begin{cases}
|m_a| & \text{if } |m_b| \geq |m_a| \\
|m_b| & \text{if } |m_b| < |m_a|
\end{cases}
\]

(54)

Denoting

\[
\Theta'_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = 2(-1)^{\xi-|m_a|+|m_b|} \binom{l_a + |m_a|}{l_a - |m_a|} \binom{l_b + |m_b|}{l_b - |m_b|} \frac{1}{(l_a + |m_a|)! (l_b + |m_b|)! (\lambda + |\mu|)! (\lambda - |\mu|)!} \frac{l_a}{0} \frac{l_b}{0} \frac{\lambda}{0} \frac{|m_a|}{|m_b|} \frac{|m_b|}{|m_a|} \frac{\lambda}{\lambda}
\]

(55)

the expression for \(\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|}\) becomes identical to that in the first case:

\[
\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = (l_a + |m_a|)! (l_b + |m_b|)! (\lambda + |\mu|)! (\lambda - |\mu|)! (l_a - |m_a|)! (l_b - |m_b|)! \frac{1}{\lambda} \Theta'_{l_a,m_a,l_b,m_b,\lambda,|\mu|}
\]

(56)

S3.3. The angular integral \(d_{ab\lambda}(\theta, \phi)\) in terms of the associated Legendre polynomials

Taking into account the conditions for which the integrals \(\Phi_{m_a,m_b,|\lambda|}\) and \(\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|}\) are not zero, the expression for \(d_{ab\lambda}(\theta, \phi)\) can be re-written as

\[
d_{ab\lambda}(\theta, \phi) = \frac{(-1)^{|m_a|+|m_b|+\lambda}(2\lambda + 1)}{4\pi} N_{l_a,m_a} N_{l_b,m_b} \sum_{\mu} \epsilon_{\mu} (\frac{\lambda - |\mu|}{\lambda + |\mu|})^{\lambda} (\cos \theta) \Phi_{m_a,m_b,|\mu|}(\phi) \Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|}
\]

(57)

where the conditions for \(\mu\) are defined via equation (44):

\[
\mu \in \{ |m_a| - |m_b|, |m_a| + |m_b| \} \quad \text{and} \quad \mu \leq \lambda
\]

Expanding \(N_{l_a,m_a}\) and \(N_{l_b,m_b}\) as

\[
N_{l_a,m_a} = \left[\frac{(2l_a + 1)}{2(1 + \delta_{m_a,0}) \pi} \right]^{1/2} \binom{l_a}{l_a} \binom{l_a + |m_a|}{l_a - |m_a|} \binom{\lambda - |m_a|}{\lambda + |m_a|}
\]

(58)

\[
N_{l_b,m_b} = \left[\frac{(2l_b + 1)}{2(1 + \delta_{m_b,0}) \pi} \right]^{1/2} \binom{l_b}{l_b} \binom{l_b + |m_b|}{l_b - |m_b|} \binom{\lambda - |m_b|}{\lambda + |m_b|}
\]

(59)

and re-writing \(\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|}\) as

\[
\Theta_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = \left(\frac{(l_a + |m_a|)! (l_b + |m_b|)! (\lambda + |\mu|)! (\lambda - |\mu|)!}{(l_a - |m_a|)! (l_b - |m_b|)! (\lambda - |\mu|)! (\lambda + |\mu|)!} \right)^{1/2} \Theta'_{l_a,m_a,l_b,m_b,\lambda,|\mu|}
\]

we get for \(d_{ab\lambda}(\theta, \phi)\)
\[
d_{ab\ell}(\theta, \phi) = \frac{(-1)^{|m_a|+|m_b|+\lambda}(2\lambda+1)}{4\pi} \frac{(2l_a + 1)}{(1 + \delta_{m_a,0})} \frac{(2l_b + 1)}{(1 + \delta_{m_b,0})} \frac{(l_a - |m_a|)!}{(l_a + |m_a|)!} \frac{(l_b - |m_b|)!}{(l_b + |m_b|)!} \left[\frac{(2l_b + 1)}{2(1 + \delta_{m_b,0}) \pi (l_b + |m_b|)!} \right]^{1/2} \times \sum_{\mu} \epsilon_\mu \left(\frac{\lambda - |\mu|}{\lambda + |\mu|} \right) \! p^{\mu}_{\lambda}(\cos \theta) \Phi_{m_a,m_b,\mu}(\phi) \left(\frac{(l_a + |m_a|)!}{(l_a - |m_a|)!} \right) \left(\frac{(l_b + |m_b|)!}{(l_b - |m_b|)!} \right) \left(\frac{(\lambda + |\mu|)!}{(\lambda - |\mu|)!} \right) \frac{1}{\sqrt{2\pi}} \right]^{1/2} \times \sum_{\mu} \epsilon_\mu \left(\frac{\lambda - |\mu|}{\lambda + |\mu|} \right) \! p^{\mu}_{\lambda}(\cos \theta) \Phi_{m_a,m_b,\mu}(\phi) \theta_{\ell,\mu,m_a,l_a,m_b,l_b}\]

(60)

After cancelling out the identical terms in numerator and denominator, the final expression for \(d_{ab\ell}(\theta, \phi)\) becomes

\[
d_{ab\ell}(\theta, \phi) = (-1)^{|m_a|+|m_b|+\lambda}(2\lambda+1) \frac{1}{8\pi^2} \frac{(2l_a + 1)}{(1 + \delta_{m_a,0})} \frac{(2l_b + 1)}{(1 + \delta_{m_b,0})} \frac{(l_a - |m_a|)!}{(l_a + |m_a|)!} \frac{(l_b - |m_b|)!}{(l_b + |m_b|)!} \left[\frac{(2l_b + 1)}{2(1 + \delta_{m_b,0}) \pi (l_b + |m_b|)!} \right]^{1/2} \times \sum_{\mu} \epsilon_\mu \left(\frac{\lambda - |\mu|}{\lambda + |\mu|} \right) \! p^{\mu}_{\lambda}(\cos \theta) \Phi_{m_a,m_b,\mu}(\phi) \theta_{\ell,\mu,m_a,l_a,m_b,l_b} \]

(61)

where \(\epsilon_\mu\) and \(\mu\) are defined as:

\[
\epsilon_0 = 1 \text{ for } \mu = 0, \text{ and } \epsilon_\mu = 2 \text{ for } \mu > 0, \text{ or simply } \epsilon_\mu = 2 - \delta_{\mu,0} \\
\mu \in \{|m_a| - |m_b|, |m_a| + |m_b|\} \text{ and } \mu \leq \lambda
\]

S3.4. The angular integral \(d_{ab\ell}(\theta, \phi)\) in terms of the R-Gaunt coefficients

Equation (61), while not very elegant, is computationally efficient because only two 3-j symbols need to be evaluated for each allowed value of \(\mu\). Alternatively, the integral \(d_{ab\ell}(\theta, \phi)\) can be expressed in a more aesthetically pleasing form in terms of overlap integrals over three real spherical harmonics (Coppens, 1997), a.k.a. real spherical harmonics coupling coefficients (Homeier & Steinborn, 1996; Coppens, 1997) and R-Gaunt coefficients (Homeier & Steinborn, 1996;). We start by considering the integral \(\Omega(\phi)\)

\[
\Omega_{\ell_a,m_{a},l_{b},m_{b},\lambda,\mu}(\phi) = \int_0^{2\pi} \int_0^\pi y_{l_a}^{m_a}(\theta, \phi) y_{l_b}^{m_b}(\theta, \phi) \cos(|\mu| \phi - \bar{\phi}) \sin(\theta) \sin(\theta) d\theta d\bar{\phi}
\]

Expanding \(\cos(|\mu| \phi - \bar{\phi})\) as

\[
\cos(|\mu| \phi - \bar{\phi}) = \cos(|\mu| \phi) \cos(|\mu| \phi) + \sin(|\mu| \phi) \sin(|\mu| \phi)
\]

separates the integral \(\Omega_{\ell_a,m_{a},l_{b},m_{b},\lambda,\mu}(\phi)\) into two integrals:

\[
\Omega_{\ell_a,m_{a},l_{b},m_{b},\lambda,\mu}(\phi) = \cos(|\mu| \phi) \int_0^{2\pi} \int_0^\pi y_{l_a}^{m_a}(\theta, \phi) y_{l_b}^{m_b}(\theta, \phi) \cos(|\mu| \phi) \sin(\theta) d\theta d\bar{\phi}
\]

(62)

+ \sin(|\mu| \phi) \int_0^{2\pi} \int_0^\pi y_{l_a}^{m_a}(\theta, \phi) y_{l_b}^{m_b}(\theta, \phi) \sin(|\mu| \phi) \sin(\theta) d\theta d\bar{\phi}

Because the real spherical harmonics are defined as
\[y_l^m(\theta, \phi) = (-1)^{|m|} N_{l,m} p_l^{|m|}(\cos \theta) \begin{cases} \cos(m \phi), m > 0 \\ \sin(m \phi), m < 0 \end{cases} \quad (l > 0) \]

(63)

with

\[N_{l,m} = \left(\frac{(2l + 1)(l - |m|)!}{2(1 + \delta_{m,0})\pi (l + |m|)!} \right)^{1/2} \]

(64)

the associated Legendre functions in the integrals can be combined with the sine and cosine functions to give the “unnormalized” real spherical harmonics:

\[p_l^{|\mu|}(\cos \theta) \cos(|\mu| \phi) = (-1)^{|\mu|} N_{l,|\mu|}^{-1} y_{l,|\mu|}^{-|\mu|}(\theta, \phi) \]

(65)

\[p_l^{|\mu|}(\cos \theta) \sin(|\mu| \phi) = (-1)^{|\mu|} N_{l,|\mu|}^{-1} y_{l,|\mu|}^{-|\mu|}(\theta, \phi) \]

(66)

where

\[N_{l,|\mu|}^{-1} = \left(\frac{2(1 + \delta_{|\mu|,0})\pi (\lambda + |\mu|)!}{(2\lambda + 1)(\lambda - |\mu|)!} \right)^{1/2} \]

(67)

Inserting those into equation (62) gives:

\[\Omega_{l,m_a,l_b,m_b,|\mu|}(\phi) = \cos(|\mu| \phi) (-1)^{|\mu|} N_{l,|\mu|}^{-1} \int_0^{2\pi} \int_0^{2\pi} y_{l_a}^{m_a}(\theta, \phi) y_{l_b}^{m_b}(\theta, \phi) y_{l,|\mu|}^{-|\mu|}(\theta, \phi) \sin \theta \, d\theta \, d\phi + \sin(|\mu| \phi) (-1)^{|\mu|} N_{l,|\mu|}^{-1} \int_0^{2\pi} \int_0^{2\pi} y_{l_a}^{m_a}(\theta, \phi) y_{l_b}^{m_b}(\theta, \phi) y_{l,|\mu|}^{-|\mu|}(\theta, \phi) \sin \theta \, d\theta \, d\phi \]

(68)

Denoting the R-Gaunt coefficients as (Homeier & Steinborn, 1996)

\[R_{l_a,m_a,l_b,m_b,\lambda,|\mu|} = \int_0^{2\pi} \int_0^{2\pi} y_{l_a}^{m_a}(\theta, \phi) y_{l_b}^{m_b}(\theta, \phi) y_{l,|\mu|}^{-|\mu|}(\theta, \phi) \sin \theta \, d\theta \, d\phi \]

(69)

\[R_{l_a,m_a,l_b,m_b,\lambda,-|\mu|} = \int_0^{2\pi} \int_0^{2\pi} y_{l_a}^{m_a}(\theta, \phi) y_{l_b}^{m_b}(\theta, \phi) y_{l,|\mu|}^{-|\mu|}(\theta, \phi) \sin \theta \, d\theta \, d\phi \]

(70)

the expression for \(d_{abl \lambda}(\theta, \phi) \) becomes

\[d_{abl \lambda}(\theta, \phi) = \frac{(-1)^{\lambda}(2\lambda + 1)}{4\pi} \times \sum_{|\mu|} \epsilon_{\lambda,|\mu|} (\lambda + |\mu|) p_l^{|\mu|}(\cos \theta) (-1)^{|\mu|} N_{l,|\mu|}^{-1} y_{l,|\mu|}^{-|\mu|}(\theta, \phi) R_{l_a,m_a,l_b,m_b,\lambda,|\mu|} + \sin(|\mu| \phi) R_{l_a,m_a,l_b,m_b,\lambda,-|\mu|} \]

(71)

Recognizing again that

\[p_l^{|\mu|}(\cos \theta) \cos(|\mu| \phi) = (-1)^{|\mu|} N_{l,|\mu|}^{-1} y_{l,|\mu|}^{-|\mu|}(\theta, \phi) \]

\[p_l^{|\mu|}(\cos \theta) \sin(|\mu| \phi) = (-1)^{|\mu|} N_{l,|\mu|}^{-1} y_{l,|\mu|}^{-|\mu|}(\theta, \phi) \]

expanding the product \(N_{l,|\mu|}^{-1} N_{l,|\mu|}^{-1} = N_{l,|\mu|}^{-2} \), simplifying \(\epsilon_{\lambda,|\mu|}(1 + \delta_{|\mu|,0}) = (2 - \delta_{|\mu|,0})(1 + \delta_{|\mu|,0}) = 2 \) and \((-1)^{|\mu|}(-1)^{|\mu|} = 1 \), and cancelling out the identical factors in numerator and denominator, gives a very
simple and elegant expression for $d_{ab\lambda}(\theta, \phi)$ in terms of real spherical harmonics and the R-Gaunt coefficients:

$$d_{ab\lambda}(\theta, \phi) = (-1)^{\mu} \sum_{\mu} \left\{ y_\lambda^{\mu}(\theta, \phi) R_{Ga}(m_a, l_a, m_b, l_b, \lambda, \mu) + y_\lambda^{-\mu}(\theta, \phi) R_{Ga}(m_a, l_a, m_b, l_b, \lambda, -\mu) \right\}$$

where μ is defined as:

$$\mu \in \{|m_a| - |m_b|, |m_a| + |m_b|\} \text{ and } \mu \leq \lambda$$

Note that these conditions are in a perfect agreement with those given in Homeier & Steinborn (1996; equation (34)).
S4. References

