Download citation
Download citation

link to html
The title compound, C9H7N3OS3·0.5H2O, crystallizes with two independent but similar mol­ecules in the asymmetric unit, both of which are linked by a water mol­ecule through O—H...N hydrogen bonds. In addition the water O atom is further linked by N—H...O hydrogen bonds to two additional main mol­ecules, forming a tetra­meric unit. These tetra­meric units then form infinite ribbons parallel to the ac plane.The dihedral angle between the thio­phenoyl and thia­zolyl rings is 12.15 (10) and 21.69 (11)° in mol­ecules A and B, respectively. The central thio­urea core makes dihedral angles of 5.77 (11) and 8.61 (9)°, respectively, with the thio­­phen­oyl and thia­zolyl rings in mol­ecule A and 8.41 (10) and 13.43 (12)° in mol­ecule B. Each mol­ecule adopts a trans–cis geometry with respect to the position of thio­phenoyl and thia­zole groups relative to the S atom across the thio­urea C—N bonds. This geometry is stabilized by intra­molecular N—H...O hydrogen bonds.

Download citation
Download citation

link to html
The title compound, C10H8N4O2S, was synthesized from furoyl isothio­cynate and 2-amino­pyrimidine in dry acetone. The two N—H groups are in an anti conformation with respect to each other and one N—H group is anti to the C=S group while the other is syn. The amide C=S and the C=O groups are syn to each other. The mean plane of the central thio­urea fragment forms dihedral angles of 13.50 (14) and 5.03 (11)° with the furan and pyrimidine rings, respectively. The dihedral angle between the furan and pyrimidine rings is 18.43 (10)°. The mol­ecular conformation is stabilized by an intra­molecular N—H...N hydrogen bond generating an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of N—H...N and weak C—H...S hydrogen bonds to form inversion dimers.
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds