Download citation
Download citation

link to html
Pyrosmalite-(Fe), ideally FeII8Si6O15(OH,Cl)10 [refined composition in this study: Fe8Si6O15(OH0.814Cl0.186)10·0.45H2O, octa­iron(II) hexa­silicate deca­(chloride/hydroxide) 0.45-hydrate], is a phyllosilicate mineral and a member of the pyrosmalite series (Fe,Mn)8Si6O15(OH,Cl)10, which includes pyrosmalite-(Mn), as well as friedelite and mcgillite, two polytypes of pyrosmalite-(Mn). This study presents the first structure determination of pyrosmalite-(Fe) based on single-crystal X-ray diffraction data from a natural sample from Burguillos del Cerro, Badajos, Spain. Pyrosmalite-(Fe) is isotypic with pyrosmalite-(Mn) and its structure is characterized by a stacking of brucite-type layers of FeO6-octa­hedra alternating with sheets of SiO4 tetra­hedra along [001]. These sheets consist of 12-, six- and four-membered rings of tetra­hedra in a 1:2:3 ratio. In contrast to previous studies on pyrosmalite-(Mn), which all assumed that Cl and one of the four OH-groups occupy the same site, our data on pyrosmalite-(Fe) revealed a split-site structure model with Cl and OH occupying distinct sites. Furthermore, our study appears to suggest the presence of disordered structural water in pyrosmalite-(Fe), consistent with infrared spectroscopic data measured from the same sample. Weak hydrogen bonding between the ordered OH-groups that are part of the brucite-type layers and the terminal silicate O atoms is present.

Download citation
Download citation

link to html
Lotharmeyerite, calcium bis­(zinc/manganese) bis­(arsenate) bis­(hydroxide/hydrate), Ca(Zn,Mn3+)2(AsO4)2(H2O,OH)2, is a member of the natrochalcite group of minerals, which are characterized by the general formula AM2(XO4)2(H2O,OH)2, where A may be occupied by Pb2+, Ca2+, Na+, and Bi3+, M by Fe3+, Mn3+, Cu2+, Zn2+, Co2+, Ni2+, Al3+, and Mg2+, and X by PV, AsV, VV, and SVI. The minerals in the group display either monoclinic or triclinic symmetry, depending on the ordering of chemical components in the M site. Based on single-crystal X-ray diffraction data of a sample from the type locality, Mapimi, Durango, Mexico, this study presents the first structure determination of lotharmeyerite. Lotharmeyerite is isostructural with natrochalcite and tsumcorite. The structure is composed of rutile-type chains of edge-shared MO6 octa­hedra (site symmetry \overline1) extending along [010], which are inter­connected by XO4 tetra­hedra (site symmetry 2) and hydrogen bonds to form [M2(XO4)2(OH,H2O)2] sheets parallel to (001). These sheets are linked by the larger A cations (site symmetry 2/m), as well as by hydrogen bonds. Bond-valence sums for the M cation, calculated with the parameters for Mn3+ and Mn2+ are 2.72 and 2.94 v.u., respectively, consistent with the occupation of the M site by Mn3+. Two distinct hydrogen bonds are present, one with O...O = 2.610 (4) Å and the other O...O = 2.595 (3) Å. One of the H-atom positions is disordered over two sites with 50% occupancy, in agreement with observations for other natrochalcite-type minerals, such as natrochalcite and tsumcorite.
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds