Download citation
Download citation

link to html
A new compound with a non-centrosymmetric structure, potassium tetra­kis­[dioxomolybdenum(IV)] arsenate trioxide, K(MoO2)4O3(AsO4), has been synthesized by a solid-state reaction. The [(MoO2)4O3(AsO4)]+ three-dimensional framework consists of single arsenate AsO4 tetra­hedra, MoO6 octa­hedra, MoO5 bipyramids and bi­octa­hedral units of edge-sharing Mo2O10 octa­hedra. The [Mo2O8] octa­hedral chains running along the a-axis direction are connected through their corners to the AsO4 tetra­hedra, MoO6 octa­hedra and MoO5 bipyramids, so as to form large tunnels propagating along the a axis in which the K+ cations are located. This structure is compared with compounds containing M2O10 (M = Mo, V, Fe) dimers and with those containing M2O8 (M = V) chains.

Download citation
Download citation

link to html
The title compound, potassium sodium dioxidomolybden­um(VI) arsenate, K0.78Na0.22MoO2AsO4, was synthesized by a solid-state reaction route. The structure is built up from corner-sharing MoO6 octa­hedra and AsO4 tetra­hedra, creating infinite [MoAsO8] chains running along the b-axis direction. As, Mo and all but one O atom are on special positions (4c) with m symmetry and K (occupancy 0.78) is on a position (4a) of -1 in the tunnels. The possible motion of the alkali cations has been investigated by means of the bond-valance sum (BVS) model. The simulation shows that the Na+ motion appears to be easier mainly along the b-axis direction. Structural relationships between the different compounds of the AMoO2AsO4 (A = Ag, Li, Na, K, Rb) series and MXO8 (M = V; X = P, As) chains are discussed.
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds