Download citation
Download citation

link to html
Accurate atomic displacement parameters obtained from time-of-flight single-crystal diffraction neutron data, collected at the newly commissioned SNS beamline TOPAZ, are presented for two organic crystals and compared to those obtained from four alternative methods: experimental charge-density modelling, high-order independent-atom models, estimates from combined TLS analysis and literature values as implemented in SHADE, and Hirshfeld atom refinement based on X-ray diffraction data.

Download citation
Acta Cryst. (2014). A70, C1552
Download citation

link to html
In recent years, semiconducting organic materials have attracted a considerable amount of interest to develop all-organic or hybrid organic-inorganic electronic devices such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), or photovoltaic cells. Rubrene (5,6,11,12-tetraphenyltetracene, RUB) is one of the most explored compound in this area as it has nearly 100% fluorescence quantum efficiency in solution. Additionally, the OFET fabricated by vacuum-deposited using orthorhombic rubrene single crystals show p-type characteristics with high mobility up to 20cm2/Vs (Podzorov et al., 2004). The large charge-carrier mobilities measured have been attributed to the packing motif (Fig a) which provides enough spatial overlap of the π-conjugated tetracene backbone. In the same time, RUB undergoes an oxidation in the presence of light to form rubrene endoperoxide (RUB-OX) (Fumagalli et al., 2011). RUB-OX molecules show electronic and structural properties strikingly different from those of RUB, mainly due to the disruption in the conjugate stacking of tetracene moieties. The significant semiconducting property of RUB is not clear yet. In this context, high resolution single crystal X-ray data of RUB (Fig b) and RUB-OX have been collected at 100K. Owing to the presence of weak aromatic stacking and quadrupolar interactions, the neutron single crystal data is also collected at 100K. The C-H bond distances and scaled anisotropic displacement parameters (ADP) of hydrogens from the neutron experiment are used in the multipolar refinements of electron density. The chemical bonding features (Fig c), the topology of electron density and strength of weak interaction are calculated by the Atoms in Molecules (AIM) theory (Bader, 1990). It is further supported by the source function description and mapping of non-covalent interactions based on the electron density. The detailed comparison of two organic semiconductors, RUB and RUB-OX will be discussed.

Download citation
Acta Cryst. (2014). A70, C1773
Download citation

link to html
CdTe and ZnTe are often referred to as II-VI semiconductors. Due to the structural and photoelectric properties and low-cost manufacturability, CdTe and ZnTe based thin films are used in the photovoltaic technology and in variety of electronic devices such as infrared, X-ray and gamma ray detectors (Eisen at al., 1998). The structure of another telluride, PbTe, has recently been reviewed and the emerging atomic disorder with temperature seems to have an indissoluble liaison with the high thermoelectric figure of merit of such promising material (Bozin et al., 2010). Deviations of the cation from its position in the ideal rock-salt structure have been probed by means of Maximum Entropy Method (MEM) calculations on Synchrotron powder X-ray diffraction data (SPXRD) (Kastbjerg et al., 2013). Motivated by the peculiar structural features in lead telluride, we investigate anharmonicity and disorder of the cations in both the zincblende structures, CdTe and ZnTe. High resolution SPXRD data at 100 K have been collected for both compounds. High energy radiation and minute capillaries have been used with the aim to minimize systematic errors on the data such as absorption and anomalous scattering. Accurate Rietveld refinements have been carried out in order to extract the best dataset of structure factors. Maximum Entropy Method calculations have hence been computed, providing the least-biased information deduction from experimental data. The disorder, anharmonicity and chemical bonding within the crystalline CdTe and ZnTe have been deeply investigated through the MEM densities and comparisons with the cation displacement in the structure of lead telluride have been established.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds