Download citation
Download citation

link to html
The title compound, [Fe2(C5H5)2(C40H22O2)] or 1,4-(FcPh)2Aq [where FcPh is 2-(4-ferrocenyl­phenyl)­ethynyl and Aq is anthra­quinone], was synthesized in an attempt to obtain a new solvent-incorporating porous material with a large void space. Thermodynamic data for 1,4-(FcPh)2Aq show a phase transition at approximately 430 K. The crystal structure of solvent-free 1,4-(FcPh)2Aq was determined at temperatures of 90, 300 and 500 K using synchrotron powder diffraction data. A direct-space method using a genetic algorithm was employed for structure solution. Charge densities calculated from observed structure factors by the maximum entropy method were employed for model improvement. The final models were obtained through multi­stage Rietveld refinements. In both phases, the structures of which differ only subtly, the planar Aq fragments are stacked alternately in opposite orientations, forming a one-dimensional column. The FcPh arms lie between the stacks and fill the remaining space, leaving no voids. C—H...π inter­actions between the Ph and Fc fragments mediate crystal packing and stabilization.
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds