Download citation
Download citation

link to html
The structure of the title compound, K2Na3P3O10, is characterized by open chains of three PO4 tetra­hedra linked by single oxygen bridges. The P3O10 groups have crystallographic twofold symmetry, with the central P atom being located on the twofold rotation axis. One of the sodium ions lies on a centre of inversion, whereas all the remaining atoms are in general positions. The structure is isotypic with that of the high-temperature form of Na5P3O10 phase I.

Download citation
Download citation

link to html
The structure of the title compound, NaK5Ni5(P2O7)4, is characterized by the presence of two crystallographically independent P2O7 groups with different conformations. The conformation of the first P2O7 group is eclipsed, whereas that of the second is staggered. All atoms are in general positions except for two nickel and one potassium ions which lie on symmetry centers. Moreover, the structure exhibits disorder of the cationic sites with one general position fully occupied equally by Na+ and Ni2+ cations. This mixed site is surrounded by five O atoms forming a square-based pyramid. The crystal structure consists of edge-sharing [NiO6] octa­hedra forming infinite zigzag chains [Ni3O14] running parallel to [100]. Adjacent chains are connected through apices to P2O7 groups and to another [NiO6] or to a [KO6] octa­hedron. The resulting three-dimensional framework presents inter­secting tunnels running along the [010] and [001] directions in which the seven- and nine-coordinated potassium cations are located. The crystal structure of this new phosphate represents a new structural type.
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds