Download citation
Download citation

link to html
The title compound, lithium dicobalt(II) triarsenate, LiCo2As3O10, was synthesized by a solid-state reaction. The As atoms and four out of seven O atoms lie on special positions, all with site symmetry m. The Li atoms are disordered over two independent special (site symmetry -1) and general positions with occupancies of 0.54 (7) and 0.23 (4), respectively. The structure model is supported by bond-valence-sum (BVS) and charge-distribution (CHARDI) methods. The structure can be described as a three-dimensional framework constructed from bi-octahedral Co2O10 dimers edge-connected to As3O10 groups. It delimits two sets of tunnels, running parallel to the a and b axes, the latter being the larger. The Li+ ions are located within the inter­sections of the tunnels. The possible motion of the alkali cations has been investigated by means of the BVS model. This simulation shows that the Li+ motion appears to be easier mainly along the b-axis direction and that this material may possess inter­esting conduction properties.

Download citation
Download citation

link to html
The title compound, trisodium dicobalt(II) (arsenate/phosphate) (diarsenate/diphosphate), was prepared by a solid-state reaction. It is isostructural with Na3Co2AsO4As2O7. The framework shows the presence of CoX22O12 (X2 is statistically disordered with As0.95P0.05) units formed by sharing corners between Co1O6 octa­hedra and X22O7 groups. These units form layers perpendicular to [010]. Co2O6 octa­hedra and X1O4 (X1 = As0.54P0.46) tetra­hedra form Co2X1O8 chains parallel to [001]. Cohesion between layers and chains is ensured by the X22O7 groups, giving rise to a three-dimensional framework with broad tunnels, running along the a- and c-axis directions, in which the Na+ ions reside. The two Co2+ cations, the X1 site and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the X1, and 2 and m (× 2) for the O sites. One of two Na atoms is disordered over three special positions [occupancy ratios 0.877 (10):0.110 (13):0.066 (9)] and the other is in a general position with full occupancy. A comparison between structures such as K2CdP2O7, α-NaTiP2O7 and K2MoO2P2O7 is made. The proposed structural model is supported by charge-distribution (CHARDI) analysis and bond-valence-sum (BVS) calculations. The distortion of the coordination polyhedra is analyzed by means of the effective coordination number.
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds