Download citation
Acta Cryst. (2014). A70, C1750
Download citation

link to html
Approaches to determining the influence of individual measurements on the precision of crystallographic least squares parameters have been known for a long while.[1] Situations in which the precision of a single parameter (or linear combination of parameters) is critical can include: determination of novel bond lengths; refinement of site occupancies in mixed metal or mixed oxidation state systems; determination of the fraction of excited state molecules in a time-resolved pump-probe experiment. Such calculations are easily applicable to point-detector instruments, where individual influential reflections could be remeasured one-by-one. However, on a modern area detector instrument many reflections are measured on one frame and therefore some consideration of the appropriate strategy of reciprocal space scans is permitted to allow a more efficient use of the instrument. The highly influential partial data collection is then feed into an appropriate refinement model. Occupancies in mixed-metal or mixed-oxidation state systems and fractions and positions of excited state molecules during a time-resolved pump-probe experiment can be determined using direct refinement of the perturbation of the structure from the ground state. Re-factoring to modern Fortran of the Crystals software is in progress to allow the implementation of new algorithms such as a difference refinement.[2] We present an analysis of diffractometer strategy selection to prioritize scans which give the best improvement in specific least-squares parameters and a novel algorithm for the refinement of the partial data using crystals.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds