Download citation
Acta Cryst. (2014). A70, C1136
Download citation

link to html
A three dimensionally magnetically oriented microcrystal array (3D-MOMA) is attractive to determination of a crystal structure as well as a molecular structure because it does not require a single crystal with sufficient size and quality for diffraction studies. We have developed a novel method to fabricate 3D-MOMA and determined several crystal structures using the 3D-MOMAs[1],[2]. However, the structure determination through MOMA requires a solidification treatment with UV curable monomer prior to X-ray diffraction experiment. We have developed a new X-ray diffractometer equipped with a magnetic field generator, which makes it possible to collect diffraction data without the solidification treatment. In this poster, we describe X-ray diffraction analyses of a magnetically oriented microcrystal suspension (MOMS) of L-alanine without the solidification treatment. A suspension of L-alanine microcrystals was poured in a glass capillary and rotated at a constant speed in a magnetic circuit attached in the X-ray diffractometer. Then, diffraction images were collected every 60 seconds. In the initial phase, the diffraction pattern showed a broad shape similar to that from a powder sample. As time goes on, diffraction patterns have gradually changed to single-crystal like patterns. After 2 hours, the shape of diffraction spots became as sharp as that of a single crystal. This observation shows that the microcrystals are oriented in the same direction. Owing to the improvement of the magnetic circuit and X-ray diffractometer, the quality of the diffraction has been greatly improved compared to that reported previously[3]. Further details of the analyses will be shown in the poster.

Download citation
Acta Cryst. (2014). A70, C1138
Download citation

link to html
We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds