Download citation
Acta Cryst. (2014). A70, C1060
Download citation

link to html
Phosphorus is an essential element for all living cells and is usually taken up in the form of phosphate. A number of microorganisms, however, are capable of extracting phosphorous from organic phosphonate compounds, which are characterized by a stable carbon-phosphorus (C-P) bond (1). The metabolic pathway responsible for phosphonate degradation is still poorly understood, but the process is known to involve two reactions before the actual C-P bond cleavage, which has been proposed to take place via a radical mechanism. A key component in the process is C-P lyase, an enzyme encoded by phnJ within the phn operon (2). To get a better insight into the mechanism of this complex degradation pathway, we have determined the crystal structure of the core of a multi-subunit enzymatic complex including the C-P lyase component with a total molecular mass of 220 kDa (3). The structure reveals the overall architecture of the C-P lyase and has important implications for our understanding of enzyme mechanism and catalysis.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds