Download citation
Acta Cryst. (2014). A70, C997
Download citation

link to html
The Schiff base compound, C12H7N2O2F3S, has been synthesized and characterized by IR, UV-Vis, 1H-NMR, 13C-NMR and single-crystal X-ray diffraction (XRD) and elemental analysis. The compound, an Ortep-3 [1] view of which is shown in Fig. 1, crystallizes in the monoclinic space group P-1 with a= 7.5700(11) Å, b= 12.8280(16) Å, c= 13.0170(16) Å, α= 89.295(10)o, β= 88.691(11)o, γ= 82.246(11)o and Z=4 in the unit cell. The molecular structure is stabilized by C-H...O and C-H...F intramolecular hydrogen bonds and molecules are linked through intermolecular C-H...O and C-H...F type hydrogen bonds and C-H...Cg (π-ring) interaction. The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartre-Fock (HF) and density functional theory (DFT/B3LYP) [2] with 6-31G(d) [3] basis set. The results of the optimized molecular structure are exhibited and compared with the experimental X-ray diffraction. To determine conformational flexibility, molecular energy profile of the title compound was obtained by B3LYP with the 6-31G(d) basis set calculations with respect to selected degree of torsional freedom, which was varied from –1800 to +1800 in steps of 100. In addition, molecular electrostatic potential (MEP) distribution and frontier molecular orbitals (FMOs) properties of the title molecule were investigated by theoretical calculations at the B3LYP/6-31G (d) level. Figure 1. Ortep 3 diagram of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds