Download citation
Acta Cryst. (2014). A70, C978
Download citation

link to html
It is well known that ferroelectricity and magnetic order are considered as hardly compatible in perovskite compounds. In this respect, PbVO3 is quite interesting: it is isostructural to ferroelectric PbTiO3 (P4mm) and contains V4+ spin ½ cations [1]. However, previous studies have failed to observe magnetic order in PbVO3, which was attributed either to a 2D magnetic behaviour or to magnetic frustration on a square lattice [2]. We present here the study of the substitution of V4+ by Fe3+ or Ti4+ cations, aiming at a better understanding of the relations between structural, magnetic and electric properties. PbVO3 single crystals and powders of substituted compounds were prepared at 6GPa , 9500C in belt and Conac type systems. A single crystal diffraction experiment confirmed the proposed structure for PbVO3, evidencing merohedral twinning related to ferroelectric domains also observed by SEM. For the Ti substitution, a complete Pb(V4+ 1-x Ti4+ x)O3 solid solution is observed for x = 0 to 1, while the Fe substitution stops at x=0.5 due to heterovalent cation replacement, the formula being Pb(V4+ 1-2x V5+ x Fe3+ x)O3. The cation oxidation states were checked by XANES (FAME-ESRF). The structures were studied by joint refinements of NPD (D1B-ILL) and XPD (Laboratory and ID31-ESRF) data, yielding the coordinations of V and M cations and the spontaneous polarization using a point charge model. A decrease of tetragonality, domain size along the c-axis and polarization is observed with increasing substitution. For the Ti series, the magnetic behaviour progressively changes from 2D to Curie-Weiss with increasing x. In the case of Fe, a broad peak in magnetic susceptibility is observed, at temperatures increasing from 12K to 30K for x going from 0.1 to 0.5. This was checked as due to a spin glass behaviour. No sign of magnetic order was observed by NPD. At the same time, a broad, frequency dependent anomaly of the dielectric constant is observed, reminiscent of a relaxor behaviour.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds