Download citation
Acta Cryst. (2014). A70, C909
Download citation

link to html
"The classical perception of single crystals of molecular materials as rigid and brittle entities has downsized the research interest in mechanical effects that had been initiated and was active back in the 1980s. More recently, the modern analytical techniques for mechanical, electron-microscopic, structural, spectroscopic and kinematic characterization have contributed to accumulate compelling evidence that under certain circumstances, even some seemingly rigid single crystals can deform, bend, twist, hop, wiggle or perform other ""acrobatics"" that are atypical for non-soft matter. These examples contribute to a paradigm shift in our understanding of the elasticity of molecular crystals and also provide direct mechanistic insight into the structural perturbations at the limits of the susceptibility of ordered matter to internal and external mechanical force. As the relevance of motility and reshaping of molecular crystals is being recognized by the crystal research community as a demonstration of a very basic concept-conversion of thermal or light energy into work-a new and exciting crystal chemistry around mechanically responsive single crystals rapidly unfolds."

Download citation
Acta Cryst. (2014). A70, C1224
Download citation

link to html
Materials showing mechanical response in presence of external stimuli are of relevance for the design of nanoscale actuating devices for a variety of small-scale applications including actuators, flexible electronics, artificial muscles, and others. In recent years, molecular actuators[1] (molecular rotor, elevator, etc.) and several macroscopic systems based on liquid-crystal elastomers, gels, and other polymers[2] have been developed. The most recent efforts are aimed at achieving rapid, reversible, maximum and fatigueless response with single crystals which display optimum coupling between light and the mechanical energy. When exposed to light, certain single crystals can jump up to thousands times their own size. The term "photosalient" was introduced recently to describe this phenomenon.[3] The photosalient effect in the motile crystals represents a direct and visually impressive demonstration of the conversion of light into mechanical motion through a photochemical reaction on a macroscopic scale, which sets the platform for the design of fast biomimetic and technomimetic actuating materials that can mimic animal motions, dynamics of macromolecules, or dynamic technical elements, in the future. In this presentation, we will describe the mechanical response from photosalient single crystals that undergo photoinduced linkage isomerization. To understand the mechanistic details, the mechanism of the process was studied by X-ray photodiffraction, kinematic analysis, IR spectroscopy and mechanical characterization. In contrast to many other solid-state transformations that involve nucleation and propagation of the reaction interface, in this system the reaction proceeds homogeneously whereupon solid solutions form without apparent phase separation.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds