Download citation
Acta Cryst. (2014). A70, C697
Download citation

link to html
Structural biology is playing an increasingly important role in vaccine development, as it can facilitate the rational design of vaccines by allowing an atomic-level control of their antigenic and immunogenic properties. Several cases are now available that demonstrate the potential of structure-based methods for vaccine development. Here, I will present an overview of the insights we gained at Novartis Vaccines from studying two protein antigens of the recently approved vaccine against serogroup B meningococcus (MenB), and their impact for vaccine design and development. MenB causes severe sepsis and invasive meningococcal disease (IMD), particularly affecting young children and adolescents. In 2013, the first genome-derived vaccine, which targets MenB (4CMenB), was approved for use in Europe, and it is expected to become widely implemented in Europe beginning in 2014. The vaccine contains 3 previously unknown recombinant proteins discovered by genome mining. For one of the antigens, Factor H Binding Protein (FHBP), we recently generated a broadly protective chimera by a structure-based approach that consisted in grafting multiple immunodominant regions onto a single scaffold. Also, co-crystal structures of FHBP with Fabs from monoclonal antibodies provided insights into the molecular bases of the immune recognition and bactericidal activity. The structure of a second antigen, Neisserial adhesin A (NadA), a member of the Trimeric Autotransporter Adhesins (TAA), revealed a novel fold, while epitope mapping by Hydrogen-Deuterium Exchange Mass Spectrometry showed that in addition to being the receptor-binding domain, the head domain of NadA is also the target of a bactericidal monoclonal antibody. Overall, the structural information on the MenB antigens presented here provides important details on the pathogenesis and vaccine-induced immunity against meningococcus, and especially informs the engineering of improved immunogens by structure-based design.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds