Download citation
Acta Cryst. (2014). A70, C383
Download citation

link to html
There has been a great interest in understanding chiroptical properties such as optical rotatory power (ORP) and circular dichroism (CD) in anisotropic materials because these properties provide valuable information on molecular/crystal structure. In particular, generation of chiroptical properties in crystals composed of achiral compounds is considered as one of the most intriguing topics in the field of crystal optics. Benzil (C6H5COCOC6H5), which consists of two phenyl rings and two carbonyl groups, is achiral in solution, but exhibits chirality in the crystalline state. In the crystalline state, the molecules are arranged in a helical form and are put along three-fold left-handed screw axis or right-handed one. The benzil crystal belongs to trigonal crystal system with non-centrosymmetric space group P3121 or P3221. Hence, the crystal symmetry allows the benzil crystal to exhibit ORP and CD and indeed it is often used as a chiral reference crystal in visible/ultraviolet region (S. Chandrasekhar, 1954; N. K. Chaudhuri & M. A. El-Sayed, 1967) as well as α-quartz and nickel sulphate hexahydrate crystals. Meanwhile, ORP and CD reflect spatial dispersion of a second-rank permittivity tensor that depends on not only frequency but also wave vector of an electromagnetic wave. Furthermore, the magnitude of ORP and CD usually vary with the direction of an incident light. It is therefore much important in chiral science to discuss the relationship between ORP and CD along the principal axes and the molecular arrangements along them, respectively. In the case of benzil crystal, it is expected to show different ORP and CD along the a and c axes because of its trigonal crystal system, D3. In this study, we attempt to measure the ORP and CD of benzil crystal in the direction of the c and a axes with the Generalized-High Accuracy Universal Polarimeter (G-HAUP)(M. Tanaka et al., 2012).
Keywords: Chirality; benzil; G-HAUP.

Download citation
Acta Cryst. (2014). A70, C1779
Download citation

link to html
A crystal, which belongs to a lower crystal system than cubic one, exhibits optical anisotropies. The optical anisotropies originate from the difference in refraction and absorption between orthogonally linearly polarized lights. When molecules forming a crystal are enantiomers with the same chirality or form helical structures with the same handedness, the crystal shows chiroptical properties, which originate from the difference in refraction and absorption between right and left circularly polarized lights. The four optical phenomena are called linear birefringence (LB), linear dichroism (LD), circular birefringence (CB) and circular dichroism (CD), respectively. It had been difficult to measure CB and CD in chiral crystals with optical anisotropies because the signals of the anisotropies are three or four orders of magnitude larger than those of chiroptical properties. The Generalized High Accuracy Universal Polarimeter (G-HAUP) [1] enables us to simultaneously measure LB, LD, CB and CD of any anisotropic crystal. Nickel sulfate (NS) is achiral in the solution state. However, in the crystalline state, it forms hexahydrate and exhibits chirality since molecules are put in helical arrangements. The NS crystal belongs to an enantiomorphous space group, P41212 or P43212. Many researchers have reported the optical properties of NS crystal because large and good-quality crystals are readily grown. However, we consider the LB, LD, CB and CD in NS crystal should be simultaneously and completely investigated. The purpose of this study is to obtain LB, LD, CB and CD along the a axis with G-HAUP and compare the CB and CD with the results along the c axis. We measured optical rotatory power (ORP) along the c axis with G-HAUP, which agrees with the previous results [2,3]. We then prepared for some samples with chirality and anisotropy. We measured LB, LD, CB and CD spectra, respectively and will demonstrate the relation between their optical properties and structures.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds