Download citation
Acta Cryst. (2014). A70, C306
Download citation

link to html
The degradation of many short-lived proteins in eukaryotic cells is carried out by the Ubiquitin Proteasome System. The N-end rule pathway links the half-life of proteins to the identity of its N-terminal residue, also called N-degron. Destabilizing N-degrons, are recognized by E3 ubiquitin ligases termed N-recognins. N-degrons are grouped into type 1, composed of basic residues, and type 2, composed of bulky hydrophobic residues. In mammals, four N-recognins mediate the N-end rule pathway: UBR1, UBR2, UBR4 and UBR5. These proteins share a ~70-residue zinc finger-like motif termed the Ubiquitin Recognin (UBR) box, responsible for their specificity. The mammalian genome encodes at least three more UBR-box proteins: UBR3, UBR6/FBXO11 and UBR7. However, these UBRs cannot recognize any type of N-degrons. Our lab reported the crystal structures of the UBR boxes from the human UBR1 and UBR2, rationalizing the empirical rules for the classification of type 1 N-degrons. Despite the valuable information obtained from those structures there is not a clear explanation for the no recognition of N-degrons by other UBR-box proteins. Here we report the crystal structure of the UBR-box domain from UBR6 also known as FBXO11. UBR6 is a F-box protein of the SKP1-Cullin1-F-box (SCF) ubiquitin ligase complex and does not recognize any type of N-degrons. We crystallized a 77-residue fragment of the UBR-box of UBR6 and determined its structure at 1.7 Å resolution. Unexpectedly, this domain adopts an open conformation compared to UBR1-box, without any N-degron binding pockets. Its zinc-binding residues are conserved as in the N-recognins, but they are arranged in different zinc-binding motifs. Molecules form dimmers stabilized by zinc ions. The crystal had 4 molecules per asymmetric unit and space group P212121. For phasing we used Zn-SAD. With this structure we hope to obtain clues that explain the absence of N-degron recognition in some members of the UBR family.

Download citation
Acta Cryst. (2014). A70, C583
Download citation

link to html
Legionella pneumophila is a gram-negative bacterium that causes Legionnaires' disease. It uses a Dot/Icm type IV secretion system to inject effector proteins into the host cell to manipulate host processes. Currently, about 300 Icm/Dot dependent effectors of L.pneumophila have been identified. Lpg1496 is an effector protein, which contains a conserved domain from the SidE family. To date, the middle domain and the conserved SidE domain have been crystallized and the structure solved at a resolution of 1.15Å and 2.3Å, respectively. A structural homology search using the middle domain suggested a similarity to phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase, an ATPase involved in purine nucleotide synthesis. We performed 1H-15N HSQC NMR titrations to show that this domain binds ATP, ADP and AMP, with the highest binding affinity for ADP. A structural homology search using the SidE domain showed a similarity to cyclic nucleotide phosphodiesterases. To further elucidate the function of lpg1496, other fragments have been cloned, expressed, and subjected to crystallization trials. Currently, we have successfully crystallized the N-terminal domain, with crystals diffracting to <2.0Å. Obtaining the crystal structure of lpg1496 and revealing its function will not only lead to a better understanding of the virulence of L. pneumophila, but also contribute to the development of novel therapeutic treatments of Legionnaires' disease.

Download citation
Acta Cryst. (2014). A70, C827
Download citation

link to html
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. It was first described in the French-Canadian population in 1978 by JP Bouchard, but ARSACS cases have since been found worldwide. The SACS gene codes for Sacsin, a 520kDa protein, which localizes in the cytoplasm, close to the mitochondria. Sacsin is composed of an N-terminal ubiquitin-like domain, which binds the proteasome, followed by three Sacsin repeat regions (SRR), a DnaJ domain, and at the C-terminus a nucleotide-binding HEPN domain, which mediates dimerization. While over 120 mutations in Sacsin are known to cause disease, the cellular function of the protein remains unclear. We recently crystallized the ATPase-like fragment of the first SRR domain from human Sacsin. The crystals diffract to better than 2A resolution and the structure determination is in progress. Future studies will focus on larger fragments of Sacsin as well as biochemical studies to investigate the cellular function of the protein.
Keywords: ARSACS; Sacsin; SRR domain.

Download citation
Acta Cryst. (2014). A70, C838
Download citation

link to html
Mutations in the gene park2 that codes for a RING-In-Between-RING (RBR) E3 ubiquitin ligase are responsible for an autosomal recessive form of Parkinson's disease (PD). Compared to other ubiquitin ligases, the parkin protein exhibits low basal activity and requires activation both in vitro and in cells. Parkin is a 465-residue E3 ubiquitin ligase promoting mitophagy of damaged mitochondria. Parkin has two RING motifs RING1 and RING2 linked by a cysteine- rich in-between-RING (IBR) motif, a recently identified zinc-coordinating motif termed RING0, and an N-terminal ubiquitin-like domain (Ubl). It is believed that parkin may function as a RING/HECT hybrid, where ubiquitin is first transferred by the E2 enzyme onto parkin active cysteine and then to the substrate. Here, we report the crystal structure of full-length parkin at low resolution. This structure shows parkin in an auto-inhibited state and provides insight into how it is activated. In the structure RING0 occludes the ubiquitin acceptor site Cys431 in RING2 whereas a novel repressor element of parkin (REP) binds RING1 and blocks its E2-binding site. The ubiquitin-like domain (Ubl) binds adjacent to the REP through the hydrophobic surface centered around Ile44 and regulate parkin activity. Mutagenesis and NMR titrations verified interactions observed in the crystal. We also proposed the putative E2 binding site on RING1 and confirmed it by mutagenesis and NMR titrations. Importantly, mutations that disrupt these inhibitory interactions activate parkin both in vitro and in cells. The structure of the E3-ubiquitin ligase provides insights into how pathological mutations affect the protein integrity. Current work is directed towards obtaining high-resolution structure of full-length parkin in complex with E2 and substrates. The results will lead to new therapeutic strategies for treating and ultimately preventing PD.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds