Download citation
Acta Cryst. (2014). A70, C304
Download citation

link to html
Post-translational modifications play diverse biological functions. Hydroxylation of collagen proteins has long been a recognised post-translational modification in eukaryotes. In the case of collagen, hydroxylation of prolyl residues, by 2-oxoglutarate and iron dependent enzymes (2OG oxygenases), in collagen proteins allows for the stabilisation of the collagen triple helix structure through conformational restraint and through the addition of a hydrogen bond donor. Additionally, hydroxylation of lysine side chains of collagen is required for cross-linking collagen (and possibly other proteins) in the extra-cellular matrix. Post-translational prolyl hydroxylation also plays a pivotal role in transcriptional regulation of the hypoxic response, as catalyzed by the hypoxia inducible factor / HIF prolyl hydroxylases (PHDs or EGLN enzymes). Recently, ribosomal protein hydroxylation catalyzed by 2OG- and Fe(II)-dependent oxygenases has been found to be a highly conserved post-translational modification in eukaryotes and prokaryotes (Ge et al and Loenarz et al). We present several crystal structures of 2OG oxygenases involved in ribosomal protein hydroxylation.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds