Download citation
Acta Cryst. (2014). A70, C299
Download citation

link to html
The Center for Structural Genomics for Infectious Diseases (CSGID) applies structural genomics approaches to biomedically relevant proteins from human pathogens and provides the infectious disease community with a high throughput pipeline for structure determination. Target proteins include drug targets, essential enzymes, virulence factors and vaccine candidates. Bacterial species generally have many acetyl-coenzyme A dependent GCN5-like Acetyl Transferases (GNATs), however, the substrates of most of them are unknown. Proteomic analysis has also revealed extensive post-translational modification of bacterial proteins, especially acetylation of lysine Nε. These observations led the CSGID to develop a high throughput substrate screen and initiate characterization of bacterial GNATs. One of the bacterial GNATs that acetylates lysine residues, is the Pseudomonas aeruginosa protein PA4794, that acetylates both peptides having a C-terminal lysine and the drug, chloramphenicol. Surprisingly, the acetylation of these two substrates by PA4794 is catalyzed by the enzyme using different active site residues and different kinetic mechanisms. Although it was expected that the GNATs would play a major role in protein acetylation, much of the lysine acetylation observed in bacteria is actually due to the metabolite acetylphosphate (1,2). Crystal structures and proteomics experiments revealed what makes some lysine residues particularly sensitive to acetylphosphate dependent lysine acetylation and what is required for subsequent enzymatic deacetylation. CSGID is funded with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contracts No. HHSN272200700058C and HHSN272201200026C and Midwest Center for Structural Genomics by grant GM094585

Download citation
Acta Cryst. (2014). A70, C432
Download citation

link to html
The Center for Structural Genomics for Infectious Diseases (CSGID) applies structural genomics approaches to biomedically important proteins from human pathogens. It also provides the infectious disease community with a high throughput pipeline for structure determination that carries out all steps of the process, from target selection through structure deposition. Target proteins include drug targets, essential enzymes, virulence factors and vaccine candidates. The CSGID has deposited over 680 structures in the Protein Data Bank. The proteins that are exposed on the surface of Gram positive bacterial pathogens (including Staphylococcus aureus, Bacillus anthracis, Listeria monocytogenes, Streptococcus species and Clostridium species) have been one focus area for the CSGID. So far, the structures of more than 55 of these proteins have been determined. The surface proteins are important in the interactions between the pathogen and its host, but many of them are as yet functionally uncharacterized. Among the examples that will be presented is the Bacillus anthracis SpoIID protein. SpoIID is part of a coordinated cell wall degradation machine that is essential for sporulation and the morphological changes involved. It represents a new family of lytic transglycosylases that degrade the glycan strands of the peptidoglycan cell wall. The two active site clefts in the dimeric enzyme include residues from both subunits, suggesting that the dimer is required for activity. This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contracts No. HHSN272200700058C and HHSN272201200026C.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds