Download citation
Acta Cryst. (2014). A70, C263
Download citation

link to html
The complex interplay between spin, charge, orbital, and lattice degrees of freedom has made low-dimensional quantum spin magnets with strong antiferromagnetic (AF) spin-exchange coupling prime candidates for studying unusual magnetic phenomena. A progressive spin-lattice dimerization in one-dimensional AF Heisenberg chains, which occurs below a critical temperature and induces a singlet ground state with a magnetic gap, is commonly referred to as spin-Peierls (SP) transition. Recently, the compounds TiOX (X = Cl, Br) and TiPO4 have been intensively investigated due to their unconventional behavior [1,2]. Unlike standard SP systems, TiOX and TiPO4 undergo a sequence of normal-incommensurate-commensurate phase transitions on cooling at remarkably high transition temperatures. The transition temperatures are related to the direct exchange interactions between Ti ions, which increases strongly with decreasing the distance between the Ti ions, and therefore is very sensitive to the applied hydrostatic pressure. We have performed pressure-dependent single-crystal X-ray diffraction of TiPO4 using synchrotron radiation. TiPO4 undergoes a pressure-induced pahse transiton towards an incommensurate phase already below 10 GPa. This transformation is followed by the lock-in phase transition to the dimerized SP phase. Both structures are analogous to those at low temperatures, but reveal significantly larger modulation amplitudes. In this contribution we will present the detailed discussion of the high-pressure structures of TiPO4 and their behavior on compression. Furthermore, similarities and differences of high-pressure phase diagrams of TiOCl and TiPO4 and discrepancies between predicted and observed structures will be considered.

Download citation
Acta Cryst. (2014). A70, C1334
Download citation

link to html
Nanocrystalline diamond (NCD) is a unique material we produce by direct conversion of glassy carbon into diamond at ca. 20 GPa and 2200 K in a multi anvil press. One of precursor materials we use is commercially available in the form of glassy carbon balls with a diameter of 20 to 50 microns. NCD demonstrates superior mechanical properties (e.g. extremely high yield strength under confining pressure) and has been successfully used for ultra-high static pressure generation (above 600 GPa) in a double-stage diamond anvil cell (DAC) (Ref. 1). To elucidate structure-property relationships in this extremely strong and seemingly inscrutable material we have investigated its microstructure using HRTEM and HAADF-STEM, measured its compressibility by means of synchrotron X-ray diffraction in a DAC, and evaluated its hardness in comparison to that of the hardest known materials - single-crystal diamond and nano-polycrystalline diamond (NPD) (Ref. 2). An additional insight into the volume compressibility was obtained due to X-ray phase contrast micro-imaging using a coherent high-energy synchrotron radiation. The established structure-property relationships will be presented and analyzed.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds