Download citation
Acta Cryst. (2014). A70, C151
Download citation

link to html
Study of multiferroics, materials simultaneously having more than one primary ferroic order parameter, is a hot topic of material sciences. The most extensively studied class of these compounds is the family of magnetoelectric multiferroics, where ferroelectricity can be induced by various types of magnetic orderings via the relativistic spin-orbit interaction. As a consequence of the cross coupling between spins and electric polarization, the spectacular control of the ferroelectric polarization by external magnetic field and the manipulation of the magnetic order via electric field can often be realized in these systems. Depending on the symmetry and microscopic mechanism of the multiferroicity the coupling energy between magnetic and electric ordering parameters can significantly vary. Classical neutron diffraction often fails in the precise determining of the complex magnetic structure in the multiferroics due to the presence of the statistically distributed domains in the macroscopic sample. Using spherical neutron polarimetry (SNP), known also as 3D polarization analysis, it is possible not only to precisely determine the complex magnetic structure, but also to investigate in-situ its evolution with external parameters and to control the magnetic domains distribution under the influence of the external electric or/and magnetic field. Here we will present some SNP results on few different multiferroic materials. In some of them, e.g. square lattice 2D antiferromagnet Ba2CoGe2O7, even strong electric field does not change the magnetic order. However rater week magnetic field is sufficient to create a mono-domain structure and to rotate spins in the plane. In other e.g. incommensurate (spiral) magnetic structure of the TbMnO3, solely electric field is sufficient to fully control the chirality of the magnetic structure. In the case of Cr2O3 both electric and magnetic fields should be applied in parallel in order to switch between the different antiferromagnetic domains.

Download citation
Acta Cryst. (2014). A70, C1543
Download citation

link to html
Geometrical frustration in the pyrochlore lattice of corner sharing tetrahedra yields exotic short range ordered ground states known as spin liquids or spin ices. Among them, Tb2Ti2O7 spin liquid (also called quantum spin ice) remains the most mysterious, in spite of 15 years of intense investigation. Our recent single crystal experiments using neutron diffraction and inelastic scattering down to 50 mK yield new insight on this question. By applying a high magnetic field along a [111] anisotropy axis [1], the Tb moments reorient gradually without showing the magnetization plateau observed in classical spin ices. Quantitative comparison with mean field calculation supports a dynamical symmetry breaking akin to a dynamic Jahn-Teller distortion, preserving the overall cubic symmetry. In the non-Kramers Tb ion this induce a quantum mixing of the wave-functions of the ground state crystal field doublet enabling the formation of a spin liquid, viewed as a non-magnetic two-singlet ground state in this mean-field picture [2]. The spin lattice coupling also shows up in the spin fluctuations in zero field [3]. Dispersive excitations emerge from pinch-points in the reciprocal space, with anisotropic spectral weight. This is the first evidence of them in a disordered ground state. They reveal the breaking of some conservation law ruling the relative orientations of the fluctuating magnetic moments in a given tetrahedron, as for the monopole excitations in classical spin ices. The algebraic character of the correlations shows that Tb2Ti2O7 ground state is akin to a Coulomb phase. Finally, the first excited crystal field level and an acoustic phonon mode interact, repelling each other. The whole results show that the magnetoelastic coupling is a key feature to understand the surprising spin liquid ground state. They call for an interaction between quadrupolar moments, whose Jahn-Teller distortion is the first (single site) approximation.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds