Download citation
Acta Cryst. (2014). A70, C150
Download citation

link to html
By analogy with ferromagnetism and the hysteresis of the magnetic moment with a magnetic field, materials that exhibit a macroscopic spontaneous polarization Ps, which can be reversed under electric field E were defined as ferroelectrics. Ps, the directional order parameter can give rise to different polar structural phase transitions and finally disappear as a function of temperature T and/or hydrostatic pressure P in a transformation from a non-centrosymmetric to a centrosymmetric space group. The physical properties of ferroelectric materials are the basis of many technological applications based on their hysteretic properties (Ps / E in ferroelectric random access memories) or based on their coupled properties (η (mechanical strain)/ E in piezoelectric applications). In order to understand the origin and the mechanisms associated with the ferroelectric properties, "in-situ" structural studies as a function of E, T and P have to be performed. In addition ferroelectric materials exhibit based on their directional properties (Ps) a particular domain configuration which makes the structural understanding of these compounds much more complex. Different scales should be taken into account: from the atomic scale (individual polar displacements) to the macroscopic scale (macroscopic piezoelectric effect) and finally the mesoscopic scale in between, which is governed by the domain wall motion. High piezoelectric/ferroelectric properties in lead perovskite materials (PZT, PMN, PZN) are structurally linked to strong disorder which can be characterized by the presence of diffuse scattering in diffraction experiments and by nanosized domains. Here we will present "in-situ" characterization in lead perovskite materials as a function of the applied electric field based on X-ray and neutron diffraction and EXAFS techniques. A brief overview of the challenges to solve in future studies as a function of pressure and temperature will also be discussed.

Download citation
Acta Cryst. (2014). A70, C753
Download citation

link to html
Extreme conditions change the behavior and reactivity of elements and compounds and permit the synthesis of novel materials. In the case of group IV oxides, molecular CO2 and a network solid silica, which were considered to be incompatible, are found to react under HP-HT conditions. A crystalline CO2-SiO2 solid solution was synthesized from molecular CO2 and microporous silicalite SiO2 at 16-22 GPa and temperatures above 4000 K in a laser heated diamond anvil cell [1]. Synchrotron X-ray diffraction data show that the crystal adopts a densely packed α-cristobalite structure (space group P41212) with carbon and silicon in 4-fold coordination. This occurs at pressures at which SiO2 normally adopts a 6-fold coordinated rutile-type stishovite structure. The P-T conditions used in this study represent a compromise between the respective stabilities of 3- and 4-fold coordination in CO2 and 4- and 6-fold coordination in SiO2. This solid solution can be recovered at ambient pressure at which the unit cell volume is 26% lower than that of α-cristobalite SiO2. This is due to the incorporation of much smaller carbon atoms, resulting in the collapse of the oxygen sublattice. The unit cell volume and the different C and Si sites identified in Raman spectroscopy are consistent with a C:Si ratio of 6(1):4(1). The tetragonal c/a ratio increases from 1.283 at 16 GPa to 1.303 at ambient pressure and is lower than that of SiO2 due to the more compact structure of the new material and essentially corresponds to that of the dense rutile-type oxygen sublattice. This can explain the small variation in volume observed for this phase corresponding to a bulk modulus of about 240 GPa. Due to the incorporation of silicon atoms, this hard solid based on CO4 tetrahedra can be retained as a metastable phase. This strongly modifies standard oxide chemistry and shows that carbon can enter silica giving rise to a new class of hard, light, carbon-rich oxide materials with novel physical properties.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds