Download citation
Acta Cryst. (2014). A70, C95
Download citation

link to html
We present an in-situ temperature study of the atomic structure of the 1/1 Cd6Tb approximant to an icosahedral quasicrystal. It belongs to the `Tsai' type family of quasicrystal and approximants whose archetype is the well-studied Cd-Yb system[1]. Its high temperature structure can be described as a bcc packing of a large Tsai atomic cluster, whose inner shell is a disordered tetrahedron at room temperature. As for most of the Cd6RE (RE=rare earth) approximant, the Cd6Tb phase undergoes a phase transition at 190 K to a phase of lower symmetry, resulting from an ordering of the inner tetrahedron[2]. Moreover, it has been shown that this phase undergoes a magnetic phase transition below 20 K, with an antiferromagnetic ordering of the Tb moment bearing atoms. It is thus particularly important to have a detailed structural study of this phase. We have carried out a systematic in situ measurement on a single grain from room temperature down to 40K on the crystal beam line located at the Soleil synchrotron. The structural phase transition is observed at about 190K. Using different attenuation, we have collected integrated intensity in a large dynamical range, leading to more than 60000 unique reflections in the C2/c monoclinic low temperature phase. The final wR2 values for room temperature and 40K are equal to 0.0726 and 0.0905 respectively. The resulting atomic structure will be compared to the well-studied approximant Zn6Sc, which is isostructural to Cd6Tb[3]. The ordering of the innermost tetrahedron leads to the distortion of the successive shells. The evolution of the high temperature phase, in particular just above Tc where pretransitional diffuse scattering is observed will be presented.

Download citation
Acta Cryst. (2014). A70, C1350
Download citation

link to html
The spin-orbit Dzyaloshinskii-Moriya (DM) interaction EDM=D·[s1×s2] can induce small canting of neighboring magnetic moments s1 and s2. It is also very important for multiferroics and helimagnetic MnSi-type crystals with the spiral or Skyrmionic structures. The sense of the DM vector D has been experimentally determined for the first time in canted antiferromagnetic FeBO3 crystal [1]. The technique of interference between magnetic and resonant channels in synchrotron x-ray scattering was exploited. The phase of antiferromagnetic ordering (and scattering) was fixed by external magnetic field and the phase of resonant scattering was calculated with FDMNES program. Similar experiments have been also performed for MnCO3 and CoCO3 crystals. For Fe2O3 hematite crystal, the technique of interference between magnetic and multiple diffraction channels has been used. The experimental measurements are supported by ab initio calculations of the DM interaction. The first-principles calculations have been performed with Local Density Approximation incorporating the on-site Coulomb interaction U and the Spin-Orbit coupling (LDA+U+SO) [2,3]. It was found how DM interaction depends on displacements of oxygen atoms. These experimental and theoretical approaches open up new possibilities for exploring, modeling and exploiting novel magnetic and multiferroic materials. VED and ENO are grateful to the RFBR research project No. 13-02-00760 and to the project of Presidium of Russian Academy of Sciences No. 24. The work of VVM is supported by the grant program of President of Russian Federation MK-5565.2013.2, the contracts of the Ministry of education and science of Russia N 14.A18.21.0076 and 14.A18.21.0889. MIK acknowledges a financial support by FOM (The Netherlands).

Download citation
Acta Cryst. (2014). A70, C1356
Download citation

link to html
The Dzyaloshinskii-Moriya (DM) interaction [1,2] produces a perpendicular component in the coupling of neighbouring spins when the symmetry between the spins is low, or can drive a distortion of intervening atoms to create a spontaneous electric polarization in some magnetoelectrics. In weak ferromagnets, the canting of the atomic moments due to the DM interaction leads to a small parasitic ferromagnetic polarization in an otherwise antiferromagnetic structure. Recently, we determined the sign of the Dzyaloshinskii-Moriya interaction in the weak ferromagnet FeBO3 by measuring the interference between resonant x-ray scattering and non-resonant magnetic scattering at a forbidden reflection [3]. Using the same method, we determine its sign in the carbonates MnCO3 and CoCO3. These isostructural materials turn out to show opposite interference effect: further analysis is underway to confirm or not that they actually have Dzyaloshinskii-Moriya interactions of opposite signs. We go one step further and apply the same principle to map the absolute orientation (direction and sense) of the magnetisation in a crystal of CoCO3: by mapping the 009 forbidden reflection at 3 azimuthal angles, we obtain 3 projections of the local magnetisation allowing its unambiguous determination. The reconstructed magnetisation map, whose spacial resolution is about 20 µm x 20 µm (the size of the focused x-ray beam), was measured after zero-field cooling to 9 K, well below the Neel temperature. It confirms the strong in-plane anisotropy of the material, with magnetisation domains essentially along 6 orientations separated by 600. Two of them, with orientation at 600 to each other (green and orange in the figure), are largely dominant on the part of the sample that was imaged. To our knowledge it is the first experimental determination of the absolute orientation of the magnetic moments in a weak ferromagnet. The figure shows the reconstructed map of magnetisation, with the direction of the local in-plane magnetisation encoded (in radians) on a periodic colour map.
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds