research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,4-di­amino-6-methyl-1,3,5-triazin-1-ium tri­chloro­acetate monohydrate

crossmark logo

aDepartment of Chemistry, Governemnt Arts College (Autonomous), Karur 639 005, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Thiruchirappalli 620 022, Tamil Nadu, India, and cDepartment of Chemistry, Mother Teresa Womens University, Kodaikanal 624 102, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 17 April 2018; accepted 5 June 2018; online 12 June 2018)

The asymmetric unit of the title mol­ecular salt, C4H8N5+·C2Cl3O2·H2O, coomprises a 2,4-di­amino-6-methyl-1,3,5-triazin-1-ium cation, a tri­chloro­acetate anion and a water mol­ecule of solvation. The protonated N atom of the cation forms a hydrogen bond with a carboxyl O atom of the anion, which also acts as a hydrogen-atom acceptor with the water mol­ecule. The cations form centrosymmetric dimeric units through R22(8) N—H⋯N bond pairs and are extended into zigzag chains along the c-axis direction, also through similar cyclic R22(8) dual N—H⋯N hydrogen-bonding inter­actions. The water mol­ecule acts as a dual acceptor forming N—H⋯O hydrogen bonds between the amine groups of the cations, forming cyclic R23(8) motifs. The second H atom of the water mol­ecule also acts as a donor in an O—H⋯O hydrogen bond with the second carboxyl O atom, linking the chains along the b-axis direction. These interactions give rise to an overall three-dimensional supra­molecular structure. A Hirshfeld surface analysis was employed in order to study the inter­molecular inter­actions.

1. Chemical context

Triazine heterocyclic π-conjugated structures are attractive owing to the chemical flexiblity of their systems and have many applications in medicinal chemistry, materials science and organic synthesis (Boesveld & Lappert, 1997[Boesveld, W. M. & Lappert, M. F. (1997). Chem. Commun. pp. 2091-2092.]; Boesveld et al., 1999[Boesveld, W. M., Hitchcock, P. B. & Lappert, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 4041-4046.]; Reid et al., 2011[Reid, D. J., Cull, J. E. W., Chisholm, K. D. S., Langlois, A., Lin, P.-H., Long, J., Lebel, O., Korobkov, I., Wang, R., Wuest, J. D., Murugesu, M. & Scott, J. (2011). Dalton Trans. 40, 5009-5017.]). 1,3,5-Triazine derivatives represent an important class of compounds because of their potential to be biologically active. They are known to be anti-protozoal agents (Baliani et al., 2005[Baliani, A., Bueno, G. J., Stewart, M. L., Yardley, V., Brun, R., Barrett, P. M. & Gilbert, I. H. (2005). J. Med. Chem. 48, 5570-5579.]), anti­cancer agents (Menicagli et al., 2004[Menicagli, R., Samaritani, S., Signore, G., Vaglini, F. & Dalla Via, L. (2004). J. Med. Chem. 47, 4649-4652.]), estrogen receptor modulators (Henke et al., 2002[Henke, B. R., Consler, T. G., Go, N., Hale, R. L., Hohman, D. R., Jones, S. A., Lu, A. T., Moore, L. B., Moore, J. T., Orband-Miller, L. A., Robinett, R. G., Shearin, J., Spearing, P. K., Stewart, E. L., Turnbull, P. S., Weaver, S. L., Williams, S. P., Wisely, G. B. & Lambert, M. H. (2002). J. Med. Chem. 45, 5492-5505.]), anti-malarials (Agarwal et al., 2005[Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. Lett. 15, 531-533.]), cyclin-dependent kinase modulators (Kuo et al., 2005[Kuo, G. H., DeAngelis, A., Emanuel, S., Wang, A., Zhang, Y., Connolly, P. J., Chen, X., Gruninger, R. H., Rugg, C., Fuentes-Pesquera, A., Middleton, S. A., Jolliffe, L. & Murray, W. V. (2005). J. Med. Chem. 48, 4535-4546.]) and anti-microbial agents (Koc et al., 2010[Koc, Z. E., Bingol, H., Saf, A. O., Torlak, E. & Coskun, A. (2010). J. Hazard. Mater. 183, 251-255.]). These compounds still continue to be the object of considerable inter­est mainly because of their applications in various fields, including the production of herbicides and polymer photostabilizers. Triazine derivatives have been used as building blocks for subtle chemical architectures comprising organic–inorganic hybrid frameworks (Ma­thias et al., 1994[Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316-4325.]; Zerkowski & Whitesides, 1994[Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298-4304.]; MacDonald & Whitesides, 1994[MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383-2420.]; Guru Row, 1999[Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81-100.]; Krische & Lehn, 2000[Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3-29.]; Sherrington & Taskinen, 2001[Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83-93.]). In these approaches, interplay between mol­ecules is achieved by using diverse styles of non-covalent inter­actions, which include hydrogen bonds or ionic, hydro­phobic, van der Waals or dispersive forces. Herein, the crystal structure of the title compound salt, 2,4-di­amino-6-methyl-1,3,5-triazine-5-ium tri­chloro­acetate monohydrate is reported. Hirshfeld surface analysis and 2D fingerprint plots were employed in order to qu­antify the contributions of the various inter­molecular inter­actions present in the structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure with atomic numbering scheme is shown in Fig. 1[link]. The asymmetric unit comprises a 2,4-di­amino-6-methyl-1,3,5-triazine-5-ium cation, a tri­chloro­acetate anion and a water mol­ecule of solvation (O1W). Proton transfer occurs from one of the carb­oxy­lic acid oxygen atoms (O1) to atom N5 of the cation, with a resulting N5—H1N5⋯O1 hydrogen bond [2.652 (3) Å, Table 1[link]]. The water mol­ecule is also hydrogen bonded to atom O1 [2.835 (3) Å]. The proton transfer to the cation results in a widening of the C3—N5—C2 bond angle of the triazinium ring to 119.06 (19)°, compared to the comparative angle found in neutral 2,4-di­amino-6-methyl-1,3,5-triazine [114.4 (7)°; Aoki et al., 1994[Aoki, K., Inaba, M., Teratani, S., Yamazaki, H. & Miyashita, Y. (1994). Inorg. Chem. 33, 3018-3020.]]. The C—O bond distances within the carboxyl group of the tri­chloro­acetate anion are 1.212 (3) and 1.251 (3) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1N5⋯O1i 0.86 1.79 2.652 (3) 178
N2—H1N2⋯O1Wii 0.86 2.03 2.886 (3) 174
N2—H2N2⋯N1iii 0.86 2.21 3.071 (3) 174
N4—H2N4⋯N3iv 0.86 2.18 3.034 (3) 173
N4—H1N4⋯O1Wv 0.86 2.22 2.834 (3) 128
O1W—H1O1⋯O1 0.86 (4) 1.97 (4) 2.835 (3) 176 (3)
O1W—H2O2⋯O2vi 0.78 (4) 1.97 (4) 2.741 (3) 173 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, -y+1, -z+1]; (iii) [-x, y, -z+{\script{1\over 2}}]; (iv) [-x, y, -z+{\script{3\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure and atom-numbering scheme for the title salt, with displacement ellipsoids drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, pairs of 2,4-di­amino-6-methyl-1,3,5-triazine-5-ium cations associate through lateral centrosymmetric inter­actions via N2—H2N2⋯N1iii and N4—H2N4⋯N3iv hydrogen bonds (Table 1[link]) with cyclic [R_{2}^{2}](8) graph-set motifs. These inter­actions result in the formation of zigzag chains extending along the c-axis direction (Fig. 2[link]). The cations in the chains are further linked through amine N2—H1N2⋯O1Wii and N4—H1N4⋯O1Wv hydrogen bonds in R32(8) motifs (Fig. 3[link]), producing a complementary DADA (D = donor and A = acceptor) hydrogen-bonded array with an R32(8), [R_{2}^{2}](8), R32(8) graph-set motif sequence (Fig. 3[link]). The water mol­ecule acts as a donor to form a second O1W—H2O2⋯O2vi hydrogen bond, which together with the O1W—H1O1⋯O1 hydrogen-bond sequence links the tri­chloro­acetate anions into chains along the b-axis direction. Overall, a three-dimensional supra­molecular structure is generated (Fig. 4[link]).

[Figure 2]
Figure 2
A packing view showing the centrosymmetric N—H⋯N hydrogen-bonded cation pairs with TCA anions, extending into chains along the c-axis direction. Water mol­ecules are omitted.
[Figure 3]
Figure 3
Another view of the extended chains with the TCA anions omitted, showing the DADA array and the participation of the water mol­ecules in hydrogen bonding.
[Figure 4]
Figure 4
An overall view of the three-dimensional hydrogen-bonded supra­molecular structure.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and 2D fingerprint plots are useful tools for describing the surface characteristics of the crystal structure and were generated using CrystalExplorer 3.0 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.0. University of Western Australia.]). The normalized contact distance (dnorm) is based on the distances from the nearest atom inside (di) and outside (de) the surface. The 3D dnorm surface of the title compound is shown in Fig. 5[link]. The red points represent closer contacts and negative dnorm values on the surface corresponding to the N—H⋯O, N—H⋯N and O—H⋯O inter­actions. Two-dimensional fingerprint plots are shown in Fig. 6[link]. H⋯H inter­actions (24.5%) are present as a major contributor while H⋯O/O⋯H (22.9%), N⋯H/H⋯N (10.2%), H⋯Cl (15.1%) N⋯H (10.2%), N⋯Cl (8.0%), C⋯Cl (5.6%), C⋯H (2.6%), Cl⋯O (2.4%), C⋯N (1.6%) and C⋯C (0.2%) contacts also make significant contributions to the Hirshfeld surface.

[Figure 5]
Figure 5
The three-dimensional Hirshfeld surface of the title compound
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2,4-di­amino-6-methyl-1,3,5-triazine yielded 22 structures of proton-transfer salts with carb­oxy­lic acids: AZUYUQ (with tetra­fluoro­boric acid; Gomathi & Mu­thiah, 2011[Gomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2762.]); CICZUK (with tri­fluoro­acetic acid; Perpétuo & Janczak, 2007[Perpétuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271-o273.]); GIMRIE (with hydrogen chloride; Portalone & Colapietro, 2007[Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655-o658.]); KUSQEV (with hydrogen chloride; Qian & Huang, 2010[Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o759.]); LUGGEB (with 3,5-di­hydroxy­benzoic acid; Xiao et al., 2014[Xiao, Z. Y., Wang, W. Q., Xue, R. Y., Zhao, L., Wang, L. & Zhang, Y. H. (2014). Sci. China Chem. 57, 1731-1737.]); NAGLIR (with dimesyl­amide; Wijaya et al., 2004[Wijaya, K., Moers, O., Henschel, D., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. B Chem. Sci. 59, 747-756.]); QUWXAI (with 2-carb­oxy­benzoic acid), QUWXEM [with (Z)-2-carb­oxy­ethene-1-carb­oxy­lic acid] and QUWXIQ (with 3-hy­droxy­pyridine-2-carb­oxy­lic acid) (Thanigaimani et al., 2010[Thanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324-o328.]); ROGPIN [with oxalic acid (methanol clathrate)], ROGPOT [with malonic acid (tetra­hydrate clathrate)], ROGPUZ [with succinic acid (clathrate)], ROGQAG [with acetyl­enedi­carb­oxy­lic acid (monohydrate clathrate)], ROGQEK [glutaric acid (clathrate)], ROGQIO [thio­diglycolic acid(clathrate)], ROGQOU [diglycolic acid (monohydrate clathrate)], ROMZOJ [fumaric acid (clathrate)] (Delori et al., 2008[Delori, A., Suresh, E. & Pedireddi, V. R. (2008). Chem. Eur. J. 14, 6967-6977.]); SOLTIX (with nitric acid; Fan et al., 2009[Fan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, o494.]); YODCAX (with 2,3,5,6-tetra­fluoro­terephthalic acid; Wang et al., 2014[Wang, L., Hu, Y., Wang, W., Liu, F. & Huang, K. (2014). CrystEngComm, 16, 4142-4161.]); ZAQJEI (with oxalic acid; Narimani & Yamin, 2012[Narimani, L. & Yamin, B. M. (2012). Acta Cryst. E68, o1475.]); ZUDSOI [with 6-chloro­uracil-1-ide (N,N-di­methyl­acetamide solvate)], ZUDSUO [with 6-chloro­uracil-1-ide (N,N-di­methyl­formamide solvate monohydrate)] (Gerhardt & Egert, 2015[Gerhardt, V. & Egert, E. (2015). Acta Cryst. B71, 209-220.]).

6. Synthesis and crystallization

The title compound was prepared by mixing a hot methano­lic solution (20 ml) of 2,4-di­amino-6-methyl-1,3,5-triazine (1.25 mg) and an aqueous solution (10 ml) of tri­chloro­acetic acid (1.63 mg) in a 1:1 molar ratio. The reaction mixture was warmed over a water bath for a few minutes. The resultant solution was then allowed to cool slowly at room temperature. After a few days, colourless block-shaped crystals of the title compound were separated out.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C- and N-bound H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation with C—H = 0.96 Å and N—H = 0.86 Å (NH, NH2), with Uiso(H) set to 1.2Ueq(C,N). The water-bound H atoms were located in a difference-Fourier map and were freely refined [O—H = 0.78 (4) and 0.86 (4) Å].

Table 2
Experimental details

Crystal data
Chemical formula C4H8N5+·C2Cl3O2·H2O
Mr 306.54
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 21.7056 (18), 11.9074 (9), 10.9562 (6)
β (°) 119.084 (5)
V3) 2474.7 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.781, 0.807
No. of measured, independent and observed [I > 2σ(I)] reflections 9801, 3027, 2280
Rint 0.027
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.159, 1.01
No. of reflections 3027
No. of parameters 163
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.68, −0.59
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

2,4-Diamino-6-methyl-1,3,5-triazin-1-ium trichloroacetate monohydrate top
Crystal data top
C4H8N5+·C2Cl3O2·H2OF(000) = 1248
Mr = 306.54Dx = 1.645 Mg m3
Dm = 1.646 Mg m3
Dm measured by Not Measured
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3519 reflections
a = 21.7056 (18) Åθ = 6.6–56.0°
b = 11.9074 (9) ŵ = 0.75 mm1
c = 10.9562 (6) ÅT = 293 K
β = 119.084 (5)°Block, colorless
V = 2474.7 (3) Å30.35 × 0.30 × 0.30 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3027 independent reflections
Radiation source: fine-focus sealed tube2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 18.4 pixels mm-1θmax = 28.3°, θmin = 3.3°
ω and φ scanh = 2728
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1514
Tmin = 0.781, Tmax = 0.807l = 148
9801 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0984P)2 + 1.9287P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06709 (3)0.61615 (7)0.46638 (9)0.0614 (3)
Cl20.13757 (4)0.58198 (9)0.30457 (7)0.0653 (3)
Cl30.08995 (5)0.39459 (7)0.40021 (13)0.0922 (4)
N10.06762 (9)0.13611 (16)0.43697 (17)0.0272 (5)
N20.05081 (9)0.14541 (17)0.35783 (18)0.0318 (5)
N30.01987 (9)0.13451 (15)0.59533 (17)0.0260 (5)
N40.09746 (10)0.12278 (18)0.82990 (18)0.0361 (6)
N50.14168 (9)0.13060 (16)0.67706 (18)0.0293 (5)
O10.22699 (10)0.62450 (18)0.6137 (2)0.0559 (7)
C10.01284 (10)0.13863 (17)0.46625 (19)0.0242 (5)
O20.22226 (11)0.4396 (2)0.6332 (2)0.0575 (7)
C20.08544 (10)0.13021 (17)0.7000 (2)0.0251 (5)
C30.13012 (11)0.13324 (18)0.5439 (2)0.0274 (6)
C40.19386 (13)0.1349 (3)0.5269 (3)0.0442 (8)
O1W0.17844 (9)0.8439 (2)0.6222 (2)0.0433 (6)
C50.19921 (11)0.5296 (2)0.5782 (2)0.0362 (7)
C60.12614 (11)0.5291 (2)0.4432 (2)0.0374 (6)
H1N50.184000.129200.746100.0350*
H1N20.087100.147100.370000.0380*
H2N20.056200.148100.274800.0380*
H2N40.062700.120700.846800.0430*
H4A0.180400.122400.430600.0660*
H4B0.225700.076800.583100.0660*
H4C0.216700.206500.555900.0660*
H1N40.140000.120000.897700.0430*
H1O10.1914 (16)0.776 (3)0.619 (3)0.045 (8)*
H2O20.205 (2)0.868 (3)0.695 (4)0.068 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0282 (3)0.0761 (6)0.0743 (5)0.0099 (3)0.0205 (3)0.0050 (4)
Cl20.0627 (5)0.0932 (7)0.0349 (4)0.0076 (4)0.0198 (3)0.0068 (3)
Cl30.0671 (6)0.0422 (5)0.1127 (8)0.0123 (4)0.0008 (5)0.0058 (5)
N10.0247 (8)0.0366 (10)0.0229 (8)0.0001 (7)0.0136 (7)0.0006 (7)
N20.0231 (8)0.0491 (11)0.0224 (8)0.0025 (8)0.0104 (7)0.0010 (8)
N30.0217 (8)0.0349 (10)0.0214 (8)0.0014 (6)0.0105 (7)0.0000 (6)
N40.0270 (9)0.0596 (13)0.0197 (8)0.0012 (8)0.0097 (7)0.0017 (8)
N50.0192 (8)0.0425 (11)0.0236 (8)0.0013 (7)0.0084 (7)0.0013 (7)
O10.0277 (9)0.0623 (14)0.0515 (11)0.0021 (8)0.0014 (8)0.0080 (9)
C10.0228 (9)0.0270 (10)0.0224 (9)0.0003 (7)0.0108 (8)0.0002 (7)
O20.0515 (11)0.0702 (14)0.0404 (10)0.0242 (10)0.0142 (9)0.0166 (9)
C20.0241 (9)0.0274 (10)0.0231 (9)0.0010 (7)0.0109 (8)0.0000 (7)
C30.0249 (9)0.0317 (11)0.0285 (10)0.0016 (8)0.0152 (8)0.0017 (8)
C40.0266 (11)0.0717 (18)0.0401 (12)0.0034 (11)0.0208 (10)0.0042 (12)
O1W0.0283 (8)0.0559 (13)0.0346 (9)0.0001 (8)0.0066 (7)0.0048 (9)
C50.0236 (9)0.0559 (15)0.0263 (10)0.0094 (10)0.0100 (8)0.0022 (10)
C60.0267 (10)0.0378 (12)0.0378 (11)0.0020 (9)0.0079 (9)0.0014 (10)
Geometric parameters (Å, º) top
Cl1—C61.760 (3)N2—H1N20.8600
Cl2—C61.770 (2)N2—H2N20.8600
Cl3—C61.745 (3)C3—C41.483 (4)
N1—C11.374 (3)N4—H2N40.8600
N1—C31.292 (3)N4—H1N40.8600
N2—C11.316 (3)N5—H1N50.8600
N3—C21.325 (3)C4—H4B0.9600
N3—C11.348 (3)C4—H4C0.9600
N4—C21.319 (3)C4—H4A0.9600
N5—C21.361 (3)C5—C61.557 (3)
N5—C31.355 (3)O1W—H1O10.86 (4)
O1—C51.251 (3)O1W—H2O20.78 (4)
O2—C51.212 (3)
C1—N1—C3115.80 (18)C2—N5—H1N5121.00
C1—N3—C2115.8 (2)C3—N5—H1N5120.00
C2—N5—C3119.06 (19)C3—C4—H4A109.00
N1—C1—N2116.02 (18)C3—C4—H4B110.00
N1—C1—N3125.08 (19)C3—C4—H4C109.00
N2—C1—N3118.9 (2)H4A—C4—H4B109.00
N3—C2—N4120.1 (2)H4A—C4—H4C110.00
N3—C2—N5121.50 (19)H4B—C4—H4C109.00
N4—C2—N5118.3 (2)O1—C5—O2128.6 (2)
C1—N2—H1N2120.00O1—C5—C6114.4 (2)
C1—N2—H2N2120.00O2—C5—C6116.9 (2)
H1N2—N2—H2N2120.00Cl1—C6—Cl2109.27 (13)
N1—C3—N5122.7 (2)Cl1—C6—Cl3108.40 (15)
N1—C3—C4121.2 (2)Cl1—C6—C5109.74 (15)
N5—C3—C4116.1 (2)Cl2—C6—Cl3109.12 (12)
C2—N4—H2N4120.00Cl2—C6—C5108.12 (17)
C2—N4—H1N4120.00Cl3—C6—C5112.16 (16)
H2N4—N4—H1N4120.00H1O1—O1W—H2O2107 (3)
C3—N1—C1—N2177.8 (2)C3—N5—C2—N4177.2 (2)
C3—N1—C1—N32.4 (3)C2—N5—C3—N10.4 (3)
C1—N1—C3—N51.3 (3)C2—N5—C3—C4179.3 (2)
C1—N1—C3—C4177.5 (2)O1—C5—C6—Cl159.0 (3)
C2—N3—C1—N11.6 (3)O1—C5—C6—Cl260.1 (3)
C2—N3—C1—N2178.58 (19)O1—C5—C6—Cl3179.51 (19)
C1—N3—C2—N4178.1 (2)O2—C5—C6—Cl1122.4 (2)
C1—N3—C2—N50.3 (3)O2—C5—C6—Cl2118.5 (2)
C3—N5—C2—N31.3 (3)O2—C5—C6—Cl31.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N5···O1i0.861.792.652 (3)178
N2—H1N2···O1Wii0.862.032.886 (3)174
N2—H2N2···N1iii0.862.213.071 (3)174
N4—H2N4···N3iv0.862.183.034 (3)173
N4—H1N4···O1Wv0.862.222.834 (3)128
O1W—H1O1···O10.86 (4)1.97 (4)2.835 (3)176 (3)
O1W—H2O2···O2vi0.78 (4)1.97 (4)2.741 (3)173 (3)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z+1; (iii) x, y, z+1/2; (iv) x, y, z+3/2; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors wish to thank the SAIF–STIC, Cochin, Kerala for the data collection.

Funding information

KB thanks the Department of Science and Technology (DST–SERB), New Delhi, India, for financial support (grant No. SB/ FT/CS-058/2013). RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of an INSPIRE fellowship (INSPIRE code No. IF131050).

References

First citationAgarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. Lett. 15, 531–533.  Web of Science CrossRef Google Scholar
First citationAoki, K., Inaba, M., Teratani, S., Yamazaki, H. & Miyashita, Y. (1994). Inorg. Chem. 33, 3018–3020.  CrossRef CAS Web of Science Google Scholar
First citationBaliani, A., Bueno, G. J., Stewart, M. L., Yardley, V., Brun, R., Barrett, P. M. & Gilbert, I. H. (2005). J. Med. Chem. 48, 5570–5579.  Web of Science CrossRef Google Scholar
First citationBoesveld, W. M., Hitchcock, P. B. & Lappert, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 4041–4046.  Web of Science CrossRef Google Scholar
First citationBoesveld, W. M. & Lappert, M. F. (1997). Chem. Commun. pp. 2091–2092.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelori, A., Suresh, E. & Pedireddi, V. R. (2008). Chem. Eur. J. 14, 6967–6977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, o494.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGerhardt, V. & Egert, E. (2015). Acta Cryst. B71, 209–220.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2762.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuru Row, T. N. (1999). Coord. Chem. Rev. 183, 81–100.  CrossRef CAS Google Scholar
First citationHenke, B. R., Consler, T. G., Go, N., Hale, R. L., Hohman, D. R., Jones, S. A., Lu, A. T., Moore, L. B., Moore, J. T., Orband-Miller, L. A., Robinett, R. G., Shearin, J., Spearing, P. K., Stewart, E. L., Turnbull, P. S., Weaver, S. L., Williams, S. P., Wisely, G. B. & Lambert, M. H. (2002). J. Med. Chem. 45, 5492–5505.  Web of Science CrossRef Google Scholar
First citationKoc, Z. E., Bingol, H., Saf, A. O., Torlak, E. & Coskun, A. (2010). J. Hazard. Mater. 183, 251–255.  Web of Science CrossRef Google Scholar
First citationKrische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29.  CrossRef CAS Google Scholar
First citationKuo, G. H., DeAngelis, A., Emanuel, S., Wang, A., Zhang, Y., Connolly, P. J., Chen, X., Gruninger, R. H., Rugg, C., Fuentes-Pesquera, A., Middleton, S. A., Jolliffe, L. & Murray, W. V. (2005). J. Med. Chem. 48, 4535–4546.  Web of Science CrossRef Google Scholar
First citationMacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.  CrossRef CAS Web of Science Google Scholar
First citationMathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325.  CrossRef Web of Science Google Scholar
First citationMenicagli, R., Samaritani, S., Signore, G., Vaglini, F. & Dalla Via, L. (2004). J. Med. Chem. 47, 4649–4652.  Web of Science CrossRef Google Scholar
First citationNarimani, L. & Yamin, B. M. (2012). Acta Cryst. E68, o1475.  CrossRef IUCr Journals Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271–o273.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655–o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o759.  Web of Science CrossRef IUCr Journals Google Scholar
First citationReid, D. J., Cull, J. E. W., Chisholm, K. D. S., Langlois, A., Lin, P.-H., Long, J., Lebel, O., Korobkov, I., Wang, R., Wuest, J. D., Murugesu, M. & Scott, J. (2011). Dalton Trans. 40, 5009–5017.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324–o328.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Hu, Y., Wang, W., Liu, F. & Huang, K. (2014). CrystEngComm, 16, 4142–4161.  Web of Science CrossRef CAS Google Scholar
First citationWijaya, K., Moers, O., Henschel, D., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. B Chem. Sci. 59, 747–756.  CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.0. University of Western Australia.  Google Scholar
First citationXiao, Z. Y., Wang, W. Q., Xue, R. Y., Zhao, L., Wang, L. & Zhang, Y. H. (2014). Sci. China Chem. 57, 1731–1737.  Web of Science CrossRef Google Scholar
First citationZerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds