organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-methyl-N-[2-(piperidin-1-yl)eth­yl]benzamide monohydrate

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 25 March 2015; accepted 18 April 2015; online 30 April 2015)

In the title compound, C15H22N2O·H2O, the dihedral angle between the planes of the piperidine and benzene rings is 31.63 (1)°. The piperidine ring adopts a chair conformation. The water solvent mol­ecule is involved in inter­species O—H⋯O, O—H⋯N, N—H⋯O and weak C—H⋯O hydrogen-bonding inter­actions, giving rise to chains extending along [010].

1. Related literature

For the biological activity of piperidine and benzamide derivatives, see: Ramalingan et al. (2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]); Sargent & May (1970[Sargent, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061-1063.]); Magar et al. (2010[Magar, D. D., Tapas, A. R. & Ambre, P. K. (2010). Pharma Chem. 2, 142-147.]); Fun et al. (2011[Fun, H.-K., Goh, J. H., Wu, D. & Zhang, Y. (2011). Acta Cryst. E67, o197.]); Haffner et al. (2010[Haffner, C. D., Thomson, S. A., Guo, Y., Petrov, K., Larkin, A., Banker, P., Schaaf, G., Dickerson, S., Gobel, J., Gillie, D., Condreay, J. P., Poole, C., Carpenter, T. & Ulrich, J. (2010). Bioorg. Med. Chem. Lett. 20, 6989-6992.]); Lavanya et al. (2010[Lavanya, P., Vani, K. V., Vasu, K., Suresh, M., Rani, V. J. & Rao, C. V. (2010). J. Chem. Pharm. Res. 2, 25-32.]). For related structures, see: Ávila et al. (2010[Ávila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.]); Prathebha et al. (2014[Prathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.], 2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]); Al-abbasi et al. (2010[Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.]). For the synthesis, see: Prathebha et al. (2014[Prathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.], 2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H22N2O·H2O

  • Mr = 264.36

  • Monoclinic, P 21 /c

  • a = 14.8504 (17) Å

  • b = 6.8243 (6) Å

  • c = 15.0070 (18) Å

  • β = 98.653 (4)°

  • V = 1503.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.22 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.986

  • 25938 measured reflections

  • 3735 independent reflections

  • 2311 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.203

  • S = 1.11

  • 3688 reflections

  • 181 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1i 0.85 (2) 1.99 (2) 2.840 (2) 177 (3)
O1W—H2W⋯N1ii 0.85 (2) 2.04 (2) 2.883 (3) 177 (3)
N2—H2⋯O1W 0.86 2.11 2.906 (2) 153
C7—H7A⋯O1Wiii 0.97 2.55 3.472 (3) 159
C10—H10⋯O1W 0.93 2.51 3.374 (3) 154
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Biologically active alkaloids of substituted piperidines have been targeted for their total or partial synthesis (Ramalingan et al., 2004). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased doses. In addition, the nucleus also possesses analgesic, anglionic blocking and anesthetic properties as well (Sergeant & May, 1970). Benzamides have been reported to correlate with many pharmacological processes such as anti-emetic, anti-psychotic and anti-arrythmic activities. Various N-substituted derivatives of benzamide are reported to possess anti-convulsant activity (Magar et al., 2010; Fun et al., 2011). Recently, Haffner & Ulrich (2010) reported that some N-substituted derivatives of benzamide can block the Kv1.3 ion channel. Moreover, these have been scanned for anti-microbial and anti-oxidant activities (Lavanya et al., 2010).

The substituted benzamide derivative, the title compound, C15H24N2O2, has been prepared and the structure is reported herein. In this compound (Fig. 1) the dihedral angle between piperidine ring the and the benzene ring ring is 31.63 (1)°. The C—C, C—N and CO bond lengths and C—C—C and C—N—C bond angles are in the normal range and are comparable with literature values and are also in good agreement with the values in similar reported structure (Avila et al., 2010, Prathebha et al., 2014). The CO distance [1.231 (2) Å] is comparable with a previously reported value (Al-abbasi et al., 2010)·. The bond angle sum around N1 [330.45 (2)°], shows sp3 hybridization of the atom. The piperidine ring adopts a chair conformation with puckering parameters of q2 = 0.035 (3) Å, φ2 = 182 (5)° q3 = -0.564 (3) Å, QT = 0.565 (3)0143 (2) Å and θ2 = 176.9 (3)°.

The water molecule is involved in the formation of inter-species hydrogen-bonding interactions (Table 1), acting as both a double donor (O1W—H···Oi and O1W—H···N1ii) as well as an acceptor (N2—H···O1W. One-dimensional chains are generated, extending along [010] (Fig. 2). Weak C—H···OW hydrogen bonds are also present.

Related literature top

For the biological activity of piperidine and benzamide derivatives, see: Ramalingan et al. (2004); Sargent & May (1970); Magar et al. (2010); Fun et al. (2011); Haffner et al. (2010); Lavanya et al. (2010). For related structures, see: Avila et al. (2010); Prathebha et al. (2014, 2015); Al-abbasi et al. (2010). For the synthesis, see: Prathebha et al. (2014, 2015).

Experimental top

The title compound was synthesized following a published procedure (Prathebha et al., 2014, 2015). In a 250 ml round-bottomed flask, 120 ml of ethylmethylketone was added to 1,2-aminoethylpiperidine (0.02 mol) and stirred at room temperature. After 5 min, triethylamine (0.04 mol) was added and the mixture was stirred for 15 min. 4-Methylbenzoyl chloride (0.04 mol) was then added and the reaction mixture was stirred at room temperature for 2 hr. A white precipitate of triethylammonium chloride was formed, which was filtered and the filtrate was evaporated to give the crude product. Two recrystallizations from ethylmethylketone give colourless block-like crystals of the title compound (yield: 82%).

Refinement top

Hydrogen atoms were positioned geometrically and treated as riding on their parent atoms and water H-atoms were located from difference Fourier maps and refined with C—H distance of 0.93–0.97 Å, an O—H distance of 0.85 (2) Å and an N—H distance of 0.86 Å, with Uiso(H) = 1.5 Ueq(C-methyl), 1.5Ueq(O) and 1.2Ueq(C) for other H atoms. One reflection (100) was considered to be affected by the beamstop.

Structure description top

Biologically active alkaloids of substituted piperidines have been targeted for their total or partial synthesis (Ramalingan et al., 2004). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased doses. In addition, the nucleus also possesses analgesic, anglionic blocking and anesthetic properties as well (Sergeant & May, 1970). Benzamides have been reported to correlate with many pharmacological processes such as anti-emetic, anti-psychotic and anti-arrythmic activities. Various N-substituted derivatives of benzamide are reported to possess anti-convulsant activity (Magar et al., 2010; Fun et al., 2011). Recently, Haffner & Ulrich (2010) reported that some N-substituted derivatives of benzamide can block the Kv1.3 ion channel. Moreover, these have been scanned for anti-microbial and anti-oxidant activities (Lavanya et al., 2010).

The substituted benzamide derivative, the title compound, C15H24N2O2, has been prepared and the structure is reported herein. In this compound (Fig. 1) the dihedral angle between piperidine ring the and the benzene ring ring is 31.63 (1)°. The C—C, C—N and CO bond lengths and C—C—C and C—N—C bond angles are in the normal range and are comparable with literature values and are also in good agreement with the values in similar reported structure (Avila et al., 2010, Prathebha et al., 2014). The CO distance [1.231 (2) Å] is comparable with a previously reported value (Al-abbasi et al., 2010)·. The bond angle sum around N1 [330.45 (2)°], shows sp3 hybridization of the atom. The piperidine ring adopts a chair conformation with puckering parameters of q2 = 0.035 (3) Å, φ2 = 182 (5)° q3 = -0.564 (3) Å, QT = 0.565 (3)0143 (2) Å and θ2 = 176.9 (3)°.

The water molecule is involved in the formation of inter-species hydrogen-bonding interactions (Table 1), acting as both a double donor (O1W—H···Oi and O1W—H···N1ii) as well as an acceptor (N2—H···O1W. One-dimensional chains are generated, extending along [010] (Fig. 2). Weak C—H···OW hydrogen bonds are also present.

For the biological activity of piperidine and benzamide derivatives, see: Ramalingan et al. (2004); Sargent & May (1970); Magar et al. (2010); Fun et al. (2011); Haffner et al. (2010); Lavanya et al. (2010). For related structures, see: Avila et al. (2010); Prathebha et al. (2014, 2015); Al-abbasi et al. (2010). For the synthesis, see: Prathebha et al. (2014, 2015).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate hydrogen bonds.
4-Methyl-N-[2-(piperidin-1-yl)ethyl]benzamide monohydrate top
Crystal data top
C15H22N2O·H2OF(000) = 576
Mr = 264.36Dx = 1.168 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.8504 (17) Åθ = 1.4–28.3°
b = 6.8243 (6) ŵ = 0.08 mm1
c = 15.0070 (18) ÅT = 293 K
β = 98.653 (4)°Block, colourless
V = 1503.6 (3) Å30.24 × 0.22 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3735 independent reflections
Radiation source: fine-focus sealed tube2311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1919
Tmin = 0.980, Tmax = 0.986k = 99
25938 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0894P)2 + 0.5035P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.34 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H22N2O·H2OV = 1503.6 (3) Å3
Mr = 264.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8504 (17) ŵ = 0.08 mm1
b = 6.8243 (6) ÅT = 293 K
c = 15.0070 (18) Å0.24 × 0.22 × 0.22 mm
β = 98.653 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3735 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2311 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.986Rint = 0.031
25938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0563 restraints
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.34 e Å3
3688 reflectionsΔρmin = 0.22 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38752 (16)0.4342 (3)0.07521 (17)0.0542 (6)
H1A0.39390.42740.01190.065*
H1B0.43380.52270.10460.065*
C20.29416 (17)0.5141 (4)0.08428 (19)0.0636 (7)
H2A0.28960.53200.14760.076*
H2B0.28610.64080.05490.076*
C30.22041 (17)0.3770 (4)0.04252 (19)0.0665 (7)
H3A0.16190.42290.05530.080*
H3B0.21860.37510.02240.080*
C40.23786 (17)0.1739 (4)0.0794 (2)0.0657 (7)
H4A0.23030.17240.14250.079*
H4B0.19360.08450.04730.079*
C50.33188 (17)0.1055 (4)0.0704 (2)0.0635 (7)
H5A0.34150.02410.09660.076*
H5B0.33770.09610.00700.076*
C60.49185 (15)0.1599 (4)0.10743 (17)0.0541 (6)
H6A0.50520.18550.04720.065*
H6B0.49090.01900.11560.065*
C70.56594 (14)0.2458 (4)0.17469 (18)0.0558 (6)
H7A0.57000.38570.16460.067*
H7B0.55190.22590.23510.067*
C80.72909 (13)0.2522 (3)0.16379 (13)0.0409 (5)
C90.81183 (13)0.1325 (3)0.15644 (13)0.0386 (4)
C100.82043 (14)0.0617 (3)0.18282 (15)0.0471 (5)
H100.77270.12310.20540.057*
C110.89864 (15)0.1651 (3)0.17615 (16)0.0517 (6)
H110.90280.29540.19450.062*
C120.97060 (14)0.0808 (4)0.14315 (14)0.0500 (5)
C130.96249 (15)0.1133 (4)0.11755 (16)0.0553 (6)
H131.01040.17390.09490.066*
C140.88495 (15)0.2194 (3)0.12477 (15)0.0500 (5)
H140.88180.35090.10820.060*
C151.05545 (18)0.1956 (5)0.1353 (2)0.0762 (8)
H15A1.04920.32650.15710.114*
H15B1.10690.13340.17060.114*
H15C1.06450.20020.07340.114*
N10.40171 (11)0.2394 (2)0.11529 (12)0.0452 (4)
N20.65238 (11)0.1538 (3)0.16645 (13)0.0497 (5)
H20.65400.02810.16310.060*
O10.73327 (11)0.4323 (2)0.16610 (13)0.0613 (5)
O1W0.61401 (11)0.2569 (2)0.19557 (13)0.0553 (5)
H1W0.6502 (18)0.350 (4)0.189 (2)0.090 (10)*
H2W0.611 (2)0.259 (5)0.2514 (13)0.116 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0519 (13)0.0525 (13)0.0580 (13)0.0099 (10)0.0078 (10)0.0021 (10)
C20.0657 (16)0.0500 (13)0.0732 (16)0.0106 (12)0.0042 (12)0.0045 (12)
C30.0461 (14)0.0774 (17)0.0734 (17)0.0080 (12)0.0002 (11)0.0027 (14)
C40.0479 (14)0.0703 (16)0.0779 (17)0.0168 (12)0.0061 (12)0.0064 (14)
C50.0588 (15)0.0482 (13)0.0813 (18)0.0057 (11)0.0028 (12)0.0127 (12)
C60.0449 (12)0.0551 (13)0.0632 (14)0.0039 (10)0.0108 (10)0.0128 (11)
C70.0366 (11)0.0558 (13)0.0760 (16)0.0008 (10)0.0114 (10)0.0201 (12)
C80.0398 (11)0.0414 (10)0.0423 (10)0.0025 (8)0.0088 (8)0.0009 (8)
C90.0353 (10)0.0412 (10)0.0400 (10)0.0013 (8)0.0078 (8)0.0015 (8)
C100.0385 (11)0.0454 (11)0.0584 (13)0.0032 (9)0.0107 (9)0.0045 (9)
C110.0467 (12)0.0446 (12)0.0631 (14)0.0061 (10)0.0059 (10)0.0037 (10)
C120.0396 (11)0.0662 (14)0.0441 (11)0.0117 (10)0.0060 (9)0.0054 (10)
C130.0383 (11)0.0726 (15)0.0579 (13)0.0011 (10)0.0164 (9)0.0152 (11)
C140.0462 (12)0.0475 (11)0.0581 (13)0.0004 (10)0.0140 (10)0.0111 (10)
C150.0564 (16)0.103 (2)0.0723 (17)0.0339 (15)0.0197 (13)0.0177 (16)
N10.0375 (9)0.0439 (9)0.0546 (10)0.0010 (7)0.0085 (7)0.0041 (8)
N20.0355 (9)0.0418 (9)0.0729 (12)0.0023 (7)0.0118 (8)0.0075 (9)
O10.0545 (10)0.0403 (8)0.0941 (13)0.0015 (7)0.0270 (9)0.0002 (8)
O1W0.0542 (10)0.0416 (9)0.0731 (13)0.0003 (7)0.0194 (8)0.0004 (8)
Geometric parameters (Å, º) top
C1—N11.461 (3)C7—H7B0.9700
C1—C21.515 (3)C8—O11.231 (2)
C1—H1A0.9700C8—N21.328 (3)
C1—H1B0.9700C8—C91.493 (3)
C2—C31.504 (4)C9—C141.383 (3)
C2—H2A0.9700C9—C101.383 (3)
C2—H2B0.9700C10—C111.376 (3)
C3—C41.501 (4)C10—H100.9300
C3—H3A0.9700C11—C121.370 (3)
C3—H3B0.9700C11—H110.9300
C4—C51.498 (3)C12—C131.379 (3)
C4—H4A0.9700C12—C151.503 (3)
C4—H4B0.9700C13—C141.378 (3)
C5—N11.468 (3)C13—H130.9300
C5—H5A0.9700C14—H140.9300
C5—H5B0.9700C15—H15A0.9600
C6—N11.465 (3)C15—H15B0.9600
C6—C71.496 (3)C15—H15C0.9600
C6—H6A0.9700N2—H20.8600
C6—H6B0.9700O1W—H1W0.849 (17)
C7—N21.451 (3)O1W—H2W0.845 (18)
C7—H7A0.9700
N1—C1—C2111.57 (19)C6—C7—H7A109.6
N1—C1—H1A109.3N2—C7—H7B109.6
C2—C1—H1A109.3C6—C7—H7B109.6
N1—C1—H1B109.3H7A—C7—H7B108.2
C2—C1—H1B109.3O1—C8—N2122.92 (18)
H1A—C1—H1B108.0O1—C8—C9120.65 (18)
C3—C2—C1111.0 (2)N2—C8—C9116.43 (17)
C3—C2—H2A109.4C14—C9—C10117.78 (18)
C1—C2—H2A109.4C14—C9—C8119.21 (18)
C3—C2—H2B109.4C10—C9—C8122.98 (17)
C1—C2—H2B109.4C11—C10—C9120.89 (19)
H2A—C2—H2B108.0C11—C10—H10119.6
C4—C3—C2110.3 (2)C9—C10—H10119.6
C4—C3—H3A109.6C12—C11—C10121.6 (2)
C2—C3—H3A109.6C12—C11—H11119.2
C4—C3—H3B109.6C10—C11—H11119.2
C2—C3—H3B109.6C11—C12—C13117.63 (19)
H3A—C3—H3B108.1C11—C12—C15121.2 (2)
C5—C4—C3111.5 (2)C13—C12—C15121.2 (2)
C5—C4—H4A109.3C14—C13—C12121.4 (2)
C3—C4—H4A109.3C14—C13—H13119.3
C5—C4—H4B109.3C12—C13—H13119.3
C3—C4—H4B109.3C13—C14—C9120.7 (2)
H4A—C4—H4B108.0C13—C14—H14119.7
N1—C5—C4111.6 (2)C9—C14—H14119.7
N1—C5—H5A109.3C12—C15—H15A109.5
C4—C5—H5A109.3C12—C15—H15B109.5
N1—C5—H5B109.3H15A—C15—H15B109.5
C4—C5—H5B109.3C12—C15—H15C109.5
H5A—C5—H5B108.0H15A—C15—H15C109.5
N1—C6—C7112.87 (18)H15B—C15—H15C109.5
N1—C6—H6A109.0C1—N1—C6112.36 (18)
C7—C6—H6A109.0C1—N1—C5109.23 (18)
N1—C6—H6B109.0C6—N1—C5108.86 (17)
C7—C6—H6B109.0C8—N2—C7123.92 (18)
H6A—C6—H6B107.8C8—N2—H2118.0
N2—C7—C6110.08 (18)C7—N2—H2118.0
N2—C7—H7A109.6H1W—O1W—H2W103 (2)
N1—C1—C2—C356.8 (3)C11—C12—C13—C140.0 (3)
C1—C2—C3—C452.5 (3)C15—C12—C13—C14179.8 (2)
C2—C3—C4—C553.0 (3)C12—C13—C14—C91.3 (4)
C3—C4—C5—N157.1 (3)C10—C9—C14—C131.8 (3)
N1—C6—C7—N2177.01 (19)C8—C9—C14—C13179.7 (2)
O1—C8—C9—C1419.8 (3)C2—C1—N1—C6179.81 (19)
N2—C8—C9—C14159.4 (2)C2—C1—N1—C559.3 (3)
O1—C8—C9—C10157.9 (2)C7—C6—N1—C177.8 (3)
N2—C8—C9—C1022.9 (3)C7—C6—N1—C5161.1 (2)
C14—C9—C10—C111.1 (3)C4—C5—N1—C159.5 (3)
C8—C9—C10—C11178.91 (19)C4—C5—N1—C6177.5 (2)
C9—C10—C11—C120.1 (3)O1—C8—N2—C71.7 (3)
C10—C11—C12—C130.7 (3)C9—C8—N2—C7179.16 (19)
C10—C11—C12—C15179.4 (2)C6—C7—N2—C8133.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.85 (2)1.99 (2)2.840 (2)177 (3)
O1W—H2W···N1ii0.85 (2)2.04 (2)2.883 (3)177 (3)
N2—H2···O1W0.862.112.906 (2)153
C7—H7A···O1Wiii0.972.553.472 (3)159
C7—H7A···O10.972.442.812 (3)102
C10—H10···O1W0.932.513.374 (3)154
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.849 (17)1.992 (17)2.840 (2)177 (3)
O1W—H2W···N1ii0.845 (18)2.039 (18)2.883 (3)177 (3)
N2—H2···O1W0.862.112.906 (2)153
C7—H7A···O1Wiii0.972.553.472 (3)159
C10—H10···O1W0.932.513.374 (3)154
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors thank SAIF, IIT, Madras, for access to the X-ray data-collection facility.

References

First citationAl-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÁvila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Wu, D. & Zhang, Y. (2011). Acta Cryst. E67, o197.  CrossRef IUCr Journals Google Scholar
First citationHaffner, C. D., Thomson, S. A., Guo, Y., Petrov, K., Larkin, A., Banker, P., Schaaf, G., Dickerson, S., Gobel, J., Gillie, D., Condreay, J. P., Poole, C., Carpenter, T. & Ulrich, J. (2010). Bioorg. Med. Chem. Lett. 20, 6989–6992.  CrossRef CAS PubMed Google Scholar
First citationLavanya, P., Vani, K. V., Vasu, K., Suresh, M., Rani, V. J. & Rao, C. V. (2010). J. Chem. Pharm. Res. 2, 25–32.  CAS Google Scholar
First citationMagar, D. D., Tapas, A. R. & Ambre, P. K. (2010). Pharma Chem. 2, 142–147.  CAS Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.  CSD CrossRef IUCr Journals Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSargent, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061–1063.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds