organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1242-o1243

Crystal structure of betulinic acid methanol monosolvate

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: tliyl@jnu.edu.cn

Edited by G. Smith, Queensland University of Technology, Australia (Received 1 October 2014; accepted 29 October 2014; online 8 November 2014)

The title compound [systematic name: 3β-hy­droxy­lup-20(29)-en-28-oic acid methanol monosolvate], C30H48O3·CH3OH, is a solvent pseudopolymorph of a naturally occurring plant-derived lupane-type penta­cyclic triterpenoid, which was isolated from the traditional Chinese medicinal plant Syzygium jambos (L.) Alston. The dihedral angle between the planes of the carb­oxy­lic acid group and the olefinic group is 12.17 (18)°. The A/B, B/C, C/D and D/E ring junctions are all trans-fused. In the crystal, O—H⋯O hydrogen bonds involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give rise to a two-dimensional network structure lying parallel to (001).

1. Related literature

For general background to the synthesis, extraction and pharmceutical activities of the title compound, see: Kashiwada et al. (1996[Kashiwada, Y., Hashimoto, F., Cosentino, L. M., Chen, C. H., Garrett, P. E. & Lee, K. H. (1996). Planta Med. 65, 740-743.]); Fulda et al. (1999[Fulda, S., Jeremias, I., Steiner, H. H., Pietsch, T. & Debatin, K. M. (1999). Int. J. Cancer, 82, 435-441.]); Liu et al. (2009[Liu, J., Zhang, H. F., He, G. Q., Li, X. L., Fu, M. L. & Chen, Q. H. (2009). Sci. Technol. Food Ind. 10, 360-366.]); Safe et al. (2012[Safe, H., Prather, P. L., Brents, L. K., Chadalapaka, G. & Jutooru, I. (2012). Anti-Cancer Agent Med. Chem. 12, 1211-1220]); Babalola et al. (2013[Babalola, I. T., Shode, F. O., Adelakun, E. A., Opoku, A. R. & Mosa, R. A. (2013). J. Pharmacogn. Phytochem. 1, 54-60.]); Heidary Navid et al. (2014[Heidary Navid, M., Laszczyk-Lauer, M. N., Reichling, J. & Schnitzler, P. (2014). Phytomedicine, 21, 1273-1280.]); Yadav & Gupta (2014[Yadav, A. K. & Gupta, M. M. (2014). JPC J. Planar Chromatogr. Mod. TLC, 27, 174-180.]). For the structure of another methanol solvate of betulinic acid, see: Wang et al. (2014[Wang, X. Y., Gong, N. B., Yang, S. Y., Du, G. H. & Lu, Y. (2014). J. Pharm. Sci. 103, 2696-2703.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H48O3·CH4O

  • Mr = 488.73

  • Orthorhombic, P 21 21 21

  • a = 7.0988 (2) Å

  • b = 12.3864 (3) Å

  • c = 33.2745 (9) Å

  • V = 2925.78 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.20 mm

2.2. Data collection

  • Oxford Diffraction Gemini S Ultra CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.748, Tmax = 1.000

  • 8319 measured reflections

  • 4343 independent reflections

  • 3796 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.05

  • 4343 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4 0.82 1.76 2.571 (3) 170
O1—H1⋯O2i 0.82 1.95 2.753 (3) 165
O4—H4⋯O1ii 0.82 1.83 2.640 (3) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound C30H48O3.CH3OH (Fig. 1) is a lupane-type pentacyclic triterpenoid [systematic name: 3β-hydroxy-lup-20 (29)-en-28-oic acid], which is a natural product isolated from plants of, e.g. Betula spp., Diospyros spp., Paeonia spp., Sambucus spp., Syzygium spp. and Ziziphus spp. (Wang et al., 2014) but mainly from the bark of Betula pubescens. It also may be obtained from the partial synthesis of betulin or preparation by biological fermentation with betulin. Betulinic acid has been demonstrated to have very high pharmacological values (Liu et al., 2009), such as anti-HIV (Kashiwada et al., 1996), anti-HSV-1 (Heidary et al., 2014), anti-tumor (Fulda et al., 1999), anti-platelet-aggregation (Babalola et al., 2013) and anti-cancer activities (Safe et al., 2012), together with anti-inflammatory (Yadav & Gupta, 2014), and antimalarial activities (Wang et al., 2014).

Five crystalline pseudopolymorphic forms of betulinic acid have been reported, including a triclinic methanol solvate (space group P1 with Z = 1), obtained from a saturated methanolic solution (Wang et al., 2014). The title compound, the methanol monosolvate C30H48O3 . CH3OH represents another pseudopolymorph which crystallizes in the orthorhombic space group P212121 with Z = 4. This compound (Fig. 1) is composed of five rings (AE), one five-membered E the others six-membered. The five-membered ring adopts a boat conformation, which has puckering parameters, ϕ = 0.2 (4)°. The six-membered ring A adopts a chair conformation with puckering parameters Q = 0.546 (3)Å, θ = 2.7 (3)°, ϕ = 100 (4)°. Rings B, C and D adopt chair conformations with puckering parameters Q = 0.575 (2)Å, θ = 10.9 (2)°,ϕ = 3.6 (12)°; Q = 0.607 (2)Å, θ = 8.12 (19)°, ϕ = 330.0 (16)°; Q = 0.580 (2)Å, θ = 170.7 (2)°, ϕ = 88.9 (15)Å, respectively. The A/B, B/C, C/D and D/E ring junctions are all trans-fused. The dihedral angle between the planes of the carboxylic group and the olefinic group is 12.17 (18)°.

In the crystal, an intermolecular hydroxy O1—H···O2icarboxyl hydrogen bond (Table 1) links the betulinic acid molecules into a zig-zag chain which extends along b. The methanol solvent molecule is linked to the parent molecule by a carboxylic acid O3—H···O4methanol hydrogen bond while the methanol molecule extends the structure through an O4—H···O1ii interaction, giving a two-dimensional network structure lying parallel to (001). The absolute configuration determined for betulinic acid (Wang et al., 2014) was invoked, giving the assignments C3(S),C5(R),C8(R),C9(R), C10(R), C13(R),C14(R),C17(S),C18(R), C19(R) for the 10 chiral centres in the molecule (using the arbitrary atom numbering scheme employed in Fig.1.

Related literature top

For general background to the synthesis, extraction and pharmceutical activities of the title compound, see: Kashiwada et al. (1996); Fulda et al. (1999); Liu et al. (2009); Safe et al. (2012); Babalola et al. (2013); Heidary Navid et al. (2014); Yadav & Gupta (2014). For the structure of another methanol solvate of betulinic acid, see: Wang et al. (2014).

Experimental top

The title compound was isolated from the herbs of the traditional Chinese medicine Syzygium jambos (L.) Alston. The herbs of Syzygium jambos (L.) Alston (5 kg) was extracted with 95% ethanol at room temperature and the extracted solution was concentrated by rotary evaporator. The crude extract was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and n-butanol. The title compound (50 mg) was isolated from the petroleum ether fraction through silica gel column chromatography and crystals were obtained after slow evaporation of a saturated methanol solution at room temperature.

Refinement top

All H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The configuration of the 10 chiral centres in the betulinic acid [C3(S),C5(R),C8(R),C9(R), C10(R), C13(R),C14(R),C17(S),C18(R), C19(R)] was invoked, giving a Flack parameter of 0.3 (3) for 1624 Friedel pairs (Flack, 1983) for the arbitrary atom numbering scheme used in this article.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Figure 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
3β-Hydroxylup-20 (29)-en-28-oic acid methanol monosolvate top
Crystal data top
C30H48O3·CH4ODx = 1.110 Mg m3
Mr = 488.73Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 3107 reflections
a = 7.0988 (2) Åθ = 3.8–62.4°
b = 12.3864 (3) ŵ = 0.55 mm1
c = 33.2745 (9) ÅT = 293 K
V = 2925.78 (13) Å3Block, colourless
Z = 40.28 × 0.25 × 0.20 mm
F(000) = 1080
Data collection top
Oxford Diffraction Gemini S Ultra CCD-detector
diffractometer
4343 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray source3796 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 16.0288 pixels mm-1θmax = 62.8°, θmin = 3.8°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1414
Tmin = 0.748, Tmax = 1.000l = 3830
8319 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.2568P]
where P = (Fo2 + 2Fc2)/3
4343 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C30H48O3·CH4OV = 2925.78 (13) Å3
Mr = 488.73Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.0988 (2) ŵ = 0.55 mm1
b = 12.3864 (3) ÅT = 293 K
c = 33.2745 (9) Å0.28 × 0.25 × 0.20 mm
Data collection top
Oxford Diffraction Gemini S Ultra CCD-detector
diffractometer
4343 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3796 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 1.000Rint = 0.030
8319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
4343 reflectionsΔρmin = 0.19 e Å3
326 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8725 (3)0.2245 (2)0.29320 (7)0.0558 (5)
H1A1.00100.23030.28360.067*
H1B0.80280.28590.28280.067*
C20.8736 (4)0.2301 (2)0.33899 (8)0.0599 (6)
H2A0.95530.17410.34950.072*
H2B0.92360.29940.34740.072*
C30.6797 (3)0.21606 (19)0.35581 (7)0.0529 (5)
H30.60160.27510.34550.063*
C40.5845 (3)0.10912 (18)0.34382 (7)0.0473 (5)
C50.5903 (3)0.10297 (16)0.29712 (7)0.0418 (4)
H50.51470.16480.28830.050*
C60.4890 (3)0.00515 (18)0.27942 (7)0.0495 (5)
H6A0.56790.05830.28220.059*
H6B0.37300.00760.29410.059*
C70.4445 (3)0.02402 (17)0.23522 (7)0.0489 (5)
H7A0.35580.08330.23310.059*
H7B0.38360.03990.22450.059*
C80.6183 (3)0.04992 (15)0.20917 (7)0.0427 (4)
C90.7414 (3)0.13761 (16)0.23044 (6)0.0423 (4)
H90.66400.20310.22970.051*
C100.7845 (3)0.11993 (17)0.27634 (7)0.0438 (5)
C110.9151 (3)0.1655 (2)0.20478 (7)0.0563 (6)
H11A0.98450.22340.21770.068*
H11B0.99710.10300.20350.068*
C120.8635 (3)0.2003 (2)0.16204 (7)0.0543 (5)
H12A0.80060.26980.16300.065*
H12B0.97790.20890.14640.065*
C130.7357 (3)0.11911 (17)0.14128 (7)0.0458 (5)
H130.80560.05090.14020.055*
C140.5543 (3)0.09684 (16)0.16666 (7)0.0424 (4)
C150.4247 (3)0.01587 (18)0.14456 (7)0.0519 (5)
H15A0.48080.05540.14640.062*
H15B0.30480.01330.15850.062*
C160.3869 (3)0.0408 (2)0.10007 (8)0.0564 (5)
H16A0.31620.01800.08810.068*
H16B0.31220.10610.09790.068*
C170.5722 (3)0.05540 (19)0.07771 (7)0.0523 (5)
C180.6821 (3)0.14719 (17)0.09793 (7)0.0479 (5)
H180.59340.20760.09990.057*
C190.8349 (3)0.1842 (2)0.06760 (7)0.0553 (5)
H190.95050.14290.07240.066*
C200.8807 (4)0.3028 (2)0.06820 (8)0.0686 (7)
C210.7510 (4)0.1508 (2)0.02599 (8)0.0705 (7)
H21A0.73580.21370.00900.085*
H21B0.83430.10020.01260.085*
C220.5582 (4)0.0977 (2)0.03415 (8)0.0651 (6)
H22A0.53540.03890.01550.078*
H22B0.45730.15010.03160.078*
C230.3767 (3)0.1168 (2)0.35735 (8)0.0648 (6)
H23A0.31430.17240.34230.097*
H23B0.37160.13380.38550.097*
H23C0.31520.04900.35270.097*
C240.6753 (4)0.0131 (2)0.36544 (8)0.0646 (6)
H24A0.62650.05300.35460.097*
H24B0.64700.01680.39360.097*
H24C0.80940.01540.36170.097*
C250.9274 (3)0.0275 (2)0.28368 (8)0.0589 (6)
H25A0.98620.03720.30940.088*
H25B1.02170.02860.26300.088*
H25C0.86280.04050.28320.088*
C260.7285 (4)0.05744 (18)0.20362 (8)0.0577 (6)
H26A0.67200.09870.18240.087*
H26B0.72440.09820.22820.087*
H26C0.85710.04180.19690.087*
C270.4397 (3)0.20241 (17)0.17149 (7)0.0496 (5)
H27A0.34190.19170.19100.074*
H27B0.38450.22170.14610.074*
H27C0.52170.25930.18030.074*
C280.6745 (4)0.0533 (2)0.07527 (7)0.0577 (6)
C291.0572 (6)0.3352 (3)0.07162 (10)0.0984 (12)
H29A1.08590.40830.07030.118*
H29B1.15270.28480.07540.118*
C300.7208 (7)0.3804 (3)0.06214 (16)0.1213 (16)
H30A0.65490.36250.03780.182*
H30B0.76930.45260.06020.182*
H30C0.63580.37580.08450.182*
C310.9582 (9)0.3072 (4)0.0316 (2)0.154 (2)
H31A0.89620.27690.00860.232*
H31B0.87140.35210.04610.232*
H31C1.06370.34980.02300.232*
O10.6889 (3)0.22739 (17)0.39892 (5)0.0708 (5)
H10.59330.25760.40700.106*
O20.5943 (3)0.13820 (15)0.07479 (8)0.0919 (7)
O30.8560 (3)0.04848 (17)0.07166 (10)0.0961 (8)
H3A0.89820.10950.06830.144*
O41.0176 (5)0.2288 (2)0.05516 (11)0.1310 (12)
H41.10220.25140.06970.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0482 (11)0.0607 (13)0.0586 (12)0.0167 (11)0.0012 (11)0.0014 (11)
C20.0538 (12)0.0635 (14)0.0624 (13)0.0131 (11)0.0032 (12)0.0061 (12)
C30.0494 (11)0.0542 (12)0.0551 (12)0.0044 (10)0.0024 (10)0.0023 (10)
C40.0382 (10)0.0501 (11)0.0536 (11)0.0031 (9)0.0006 (10)0.0055 (10)
C50.0333 (9)0.0362 (9)0.0558 (11)0.0030 (8)0.0002 (9)0.0064 (9)
C60.0418 (10)0.0434 (10)0.0633 (13)0.0080 (9)0.0052 (10)0.0061 (10)
C70.0391 (9)0.0451 (11)0.0624 (12)0.0124 (9)0.0012 (10)0.0008 (10)
C80.0339 (9)0.0364 (9)0.0577 (12)0.0011 (8)0.0019 (9)0.0014 (9)
C90.0308 (9)0.0417 (10)0.0544 (11)0.0009 (8)0.0008 (9)0.0001 (9)
C100.0313 (9)0.0450 (10)0.0552 (11)0.0001 (9)0.0003 (9)0.0018 (9)
C110.0365 (10)0.0771 (15)0.0554 (12)0.0146 (11)0.0012 (10)0.0001 (12)
C120.0413 (10)0.0671 (14)0.0545 (12)0.0157 (10)0.0043 (10)0.0011 (11)
C130.0360 (9)0.0471 (10)0.0543 (11)0.0006 (9)0.0025 (9)0.0007 (10)
C140.0334 (8)0.0382 (9)0.0554 (11)0.0008 (8)0.0023 (9)0.0001 (9)
C150.0421 (10)0.0515 (11)0.0621 (13)0.0098 (9)0.0009 (10)0.0032 (11)
C160.0453 (11)0.0591 (12)0.0649 (13)0.0047 (10)0.0115 (11)0.0046 (11)
C170.0506 (11)0.0522 (11)0.0540 (12)0.0008 (10)0.0075 (10)0.0000 (10)
C180.0441 (10)0.0452 (11)0.0543 (12)0.0007 (9)0.0005 (10)0.0002 (10)
C190.0563 (12)0.0568 (12)0.0528 (12)0.0060 (11)0.0053 (11)0.0016 (11)
C200.0894 (19)0.0612 (14)0.0554 (13)0.0172 (15)0.0160 (14)0.0033 (12)
C210.0819 (17)0.0765 (16)0.0532 (13)0.0124 (15)0.0004 (14)0.0000 (13)
C220.0743 (15)0.0646 (14)0.0564 (13)0.0050 (13)0.0122 (13)0.0033 (12)
C230.0435 (11)0.0870 (17)0.0638 (14)0.0008 (12)0.0080 (11)0.0005 (14)
C240.0694 (15)0.0607 (14)0.0638 (14)0.0060 (12)0.0038 (13)0.0145 (12)
C250.0409 (10)0.0737 (15)0.0621 (13)0.0179 (11)0.0013 (11)0.0006 (12)
C260.0615 (13)0.0457 (11)0.0659 (13)0.0131 (11)0.0074 (12)0.0047 (11)
C270.0421 (10)0.0464 (11)0.0602 (12)0.0072 (9)0.0012 (10)0.0027 (10)
C280.0654 (14)0.0521 (13)0.0555 (12)0.0026 (12)0.0008 (11)0.0065 (11)
C290.127 (3)0.100 (2)0.0679 (17)0.058 (2)0.011 (2)0.0139 (17)
C300.139 (3)0.0624 (17)0.162 (4)0.013 (2)0.058 (3)0.019 (2)
C310.161 (5)0.122 (4)0.180 (5)0.010 (4)0.045 (5)0.058 (4)
O10.0632 (10)0.0922 (13)0.0571 (9)0.0064 (10)0.0017 (8)0.0142 (9)
O20.1020 (15)0.0548 (10)0.1188 (17)0.0123 (11)0.0369 (15)0.0120 (11)
O30.0664 (11)0.0634 (10)0.159 (2)0.0099 (9)0.0085 (14)0.0236 (14)
O40.135 (2)0.1133 (19)0.144 (2)0.0652 (18)0.068 (2)0.0608 (19)
Geometric parameters (Å, º) top
C1—C21.525 (3)C16—H16B0.9700
C1—C101.544 (3)C17—C281.532 (3)
C1—H1A0.9700C17—C181.534 (3)
C1—H1B0.9700C17—C221.544 (4)
C2—C31.496 (3)C18—C191.551 (3)
C2—H2A0.9700C18—H180.9800
C2—H2B0.9700C19—C201.505 (4)
C3—O11.443 (3)C19—C211.563 (4)
C3—C41.540 (3)C19—H190.9800
C3—H30.9800C20—C291.320 (5)
C4—C241.532 (3)C20—C301.501 (5)
C4—C231.545 (3)C21—C221.542 (4)
C4—C51.556 (3)C21—H21A0.9700
C5—C61.527 (3)C21—H21B0.9700
C5—C101.557 (3)C22—H22A0.9700
C5—H50.9800C22—H22B0.9700
C6—C71.522 (3)C23—H23A0.9600
C6—H6A0.9700C23—H23B0.9600
C6—H6B0.9700C23—H23C0.9600
C7—C81.542 (3)C24—H24A0.9600
C7—H7A0.9700C24—H24B0.9600
C7—H7B0.9700C24—H24C0.9600
C8—C261.554 (3)C25—H25A0.9600
C8—C91.563 (3)C25—H25B0.9600
C8—C141.595 (3)C25—H25C0.9600
C9—C111.539 (3)C26—H26A0.9600
C9—C101.573 (3)C26—H26B0.9600
C9—H90.9800C26—H26C0.9600
C10—C251.549 (3)C27—H27A0.9600
C11—C121.531 (3)C27—H27B0.9600
C11—H11A0.9700C27—H27C0.9600
C11—H11B0.9700C28—O21.196 (3)
C12—C131.521 (3)C28—O31.295 (3)
C12—H12A0.9700C29—H29A0.9300
C12—H12B0.9700C29—H29B0.9300
C13—C181.532 (3)C30—H30A0.9600
C13—C141.564 (3)C30—H30B0.9600
C13—H130.9800C30—H30C0.9600
C14—C151.547 (3)C31—O41.317 (6)
C14—C271.548 (3)C31—H31A0.9600
C15—C161.536 (4)C31—H31B0.9600
C15—H15A0.9700C31—H31C0.9600
C15—H15B0.9700O1—H10.8200
C16—C171.522 (3)O3—H3A0.8200
C16—H16A0.9700O4—H40.8200
C2—C1—C10113.8 (2)C17—C16—C15110.12 (18)
C2—C1—H1A108.8C17—C16—H16A109.6
C10—C1—H1A108.8C15—C16—H16A109.6
C2—C1—H1B108.8C17—C16—H16B109.6
C10—C1—H1B108.8C15—C16—H16B109.6
H1A—C1—H1B107.7H16A—C16—H16B108.2
C3—C2—C1111.3 (2)C16—C17—C28109.31 (19)
C3—C2—H2A109.4C16—C17—C18108.26 (19)
C1—C2—H2A109.4C28—C17—C18115.70 (19)
C3—C2—H2B109.4C16—C17—C22116.3 (2)
C1—C2—H2B109.4C28—C17—C22106.2 (2)
H2A—C2—H2B108.0C18—C17—C22101.12 (19)
O1—C3—C2108.62 (19)C13—C18—C17111.77 (18)
O1—C3—C4111.2 (2)C13—C18—C19120.43 (18)
C2—C3—C4114.0 (2)C17—C18—C19106.80 (18)
O1—C3—H3107.6C13—C18—H18105.6
C2—C3—H3107.6C17—C18—H18105.6
C4—C3—H3107.6C19—C18—H18105.6
C24—C4—C3111.19 (19)C20—C19—C18115.5 (2)
C24—C4—C23108.2 (2)C20—C19—C21110.7 (2)
C3—C4—C23106.88 (19)C18—C19—C21103.41 (19)
C24—C4—C5114.82 (19)C20—C19—H19109.0
C3—C4—C5106.82 (18)C18—C19—H19109.0
C23—C4—C5108.60 (18)C21—C19—H19109.0
C6—C5—C4114.31 (18)C29—C20—C30122.4 (3)
C6—C5—C10110.66 (17)C29—C20—C19120.2 (3)
C4—C5—C10117.39 (17)C30—C20—C19117.4 (3)
C6—C5—H5104.3C22—C21—C19107.2 (2)
C4—C5—H5104.3C22—C21—H21A110.3
C10—C5—H5104.3C19—C21—H21A110.3
C7—C6—C5110.40 (18)C22—C21—H21B110.3
C7—C6—H6A109.6C19—C21—H21B110.3
C5—C6—H6A109.6H21A—C21—H21B108.5
C7—C6—H6B109.6C21—C22—C17104.6 (2)
C5—C6—H6B109.6C21—C22—H22A110.8
H6A—C6—H6B108.1C17—C22—H22A110.8
C6—C7—C8114.14 (18)C21—C22—H22B110.8
C6—C7—H7A108.7C17—C22—H22B110.8
C8—C7—H7A108.7H22A—C22—H22B108.9
C6—C7—H7B108.7C4—C23—H23A109.5
C8—C7—H7B108.7C4—C23—H23B109.5
H7A—C7—H7B107.6H23A—C23—H23B109.5
C7—C8—C26106.96 (18)C4—C23—H23C109.5
C7—C8—C9109.73 (17)H23A—C23—H23C109.5
C26—C8—C9111.53 (16)H23B—C23—H23C109.5
C7—C8—C14110.27 (16)C4—C24—H24A109.5
C26—C8—C14110.46 (18)C4—C24—H24B109.5
C9—C8—C14107.91 (15)H24A—C24—H24B109.5
C11—C9—C8110.68 (18)C4—C24—H24C109.5
C11—C9—C10114.46 (16)H24A—C24—H24C109.5
C8—C9—C10116.83 (17)H24B—C24—H24C109.5
C11—C9—H9104.4C10—C25—H25A109.5
C8—C9—H9104.4C10—C25—H25B109.5
C10—C9—H9104.4H25A—C25—H25B109.5
C1—C10—C25107.34 (18)C10—C25—H25C109.5
C1—C10—C5108.07 (18)H25A—C25—H25C109.5
C25—C10—C5114.23 (18)H25B—C25—H25C109.5
C1—C10—C9108.34 (17)C8—C26—H26A109.5
C25—C10—C9112.54 (18)C8—C26—H26B109.5
C5—C10—C9106.13 (16)H26A—C26—H26B109.5
C12—C11—C9112.75 (18)C8—C26—H26C109.5
C12—C11—H11A109.0H26A—C26—H26C109.5
C9—C11—H11A109.0H26B—C26—H26C109.5
C12—C11—H11B109.0C14—C27—H27A109.5
C9—C11—H11B109.0C14—C27—H27B109.5
H11A—C11—H11B107.8H27A—C27—H27B109.5
C13—C12—C11112.25 (19)C14—C27—H27C109.5
C13—C12—H12A109.2H27A—C27—H27C109.5
C11—C12—H12A109.2H27B—C27—H27C109.5
C13—C12—H12B109.2O2—C28—O3120.8 (3)
C11—C12—H12B109.2O2—C28—C17123.2 (2)
H12A—C12—H12B107.9O3—C28—C17115.8 (2)
C12—C13—C18115.19 (18)C20—C29—H29A120.0
C12—C13—C14111.25 (18)C20—C29—H29B120.0
C18—C13—C14110.13 (17)H29A—C29—H29B120.0
C12—C13—H13106.6C20—C30—H30A109.5
C18—C13—H13106.6C20—C30—H30B109.5
C14—C13—H13106.6H30A—C30—H30B109.5
C15—C14—C27106.52 (17)C20—C30—H30C109.5
C15—C14—C13110.32 (17)H30A—C30—H30C109.5
C27—C14—C13109.85 (16)H30B—C30—H30C109.5
C15—C14—C8110.77 (16)O4—C31—H31A109.5
C27—C14—C8111.42 (17)O4—C31—H31B109.5
C13—C14—C8107.97 (15)H31A—C31—H31B109.5
C16—C15—C14115.59 (19)O4—C31—H31C109.5
C16—C15—H15A108.4H31A—C31—H31C109.5
C14—C15—H15A108.4H31B—C31—H31C109.5
C16—C15—H15B108.4C3—O1—H1109.5
C14—C15—H15B108.4C28—O3—H3A109.5
H15A—C15—H15B107.4C31—O4—H4109.5
C10—C1—C2—C355.7 (3)C18—C13—C14—C2767.3 (2)
C1—C2—C3—O1177.2 (2)C12—C13—C14—C860.0 (2)
C1—C2—C3—C458.2 (3)C18—C13—C14—C8171.05 (17)
O1—C3—C4—C2451.5 (2)C7—C8—C14—C1557.9 (2)
C2—C3—C4—C2471.7 (3)C26—C8—C14—C1560.2 (2)
O1—C3—C4—C2366.4 (2)C9—C8—C14—C15177.70 (16)
C2—C3—C4—C23170.4 (2)C7—C8—C14—C2760.5 (2)
O1—C3—C4—C5177.52 (17)C26—C8—C14—C27178.54 (17)
C2—C3—C4—C554.3 (2)C9—C8—C14—C2759.3 (2)
C24—C4—C5—C660.3 (2)C7—C8—C14—C13178.75 (16)
C3—C4—C5—C6175.89 (17)C26—C8—C14—C1360.7 (2)
C23—C4—C5—C660.9 (2)C9—C8—C14—C1361.41 (19)
C24—C4—C5—C1071.7 (2)C27—C14—C15—C1670.8 (2)
C3—C4—C5—C1052.0 (2)C13—C14—C15—C1648.4 (2)
C23—C4—C5—C10166.98 (19)C8—C14—C15—C16167.85 (18)
C4—C5—C6—C7161.11 (17)C14—C15—C16—C1753.2 (3)
C10—C5—C6—C763.7 (2)C15—C16—C17—C2868.7 (2)
C5—C6—C7—C856.8 (2)C15—C16—C17—C1858.1 (2)
C6—C7—C8—C2674.0 (2)C15—C16—C17—C22171.1 (2)
C6—C7—C8—C947.1 (2)C12—C13—C18—C17173.50 (19)
C6—C7—C8—C14165.83 (17)C14—C13—C18—C1759.7 (2)
C7—C8—C9—C11179.51 (18)C12—C13—C18—C1947.0 (3)
C26—C8—C9—C1162.2 (2)C14—C13—C18—C19173.75 (18)
C14—C8—C9—C1159.3 (2)C16—C17—C18—C1363.8 (2)
C7—C8—C9—C1047.1 (2)C28—C17—C18—C1359.2 (3)
C26—C8—C9—C1071.2 (2)C22—C17—C18—C13173.45 (19)
C14—C8—C9—C10167.28 (16)C16—C17—C18—C19162.52 (18)
C2—C1—C10—C2573.5 (3)C28—C17—C18—C1974.4 (2)
C2—C1—C10—C550.1 (3)C22—C17—C18—C1939.8 (2)
C2—C1—C10—C9164.69 (19)C13—C18—C19—C2085.4 (3)
C6—C5—C10—C1175.72 (18)C17—C18—C19—C20145.8 (2)
C4—C5—C10—C150.6 (2)C13—C18—C19—C21153.6 (2)
C6—C5—C10—C2564.9 (2)C17—C18—C19—C2124.8 (2)
C4—C5—C10—C2568.8 (2)C18—C19—C20—C29128.0 (3)
C6—C5—C10—C959.7 (2)C21—C19—C20—C29114.9 (3)
C4—C5—C10—C9166.61 (17)C18—C19—C20—C3055.8 (4)
C11—C9—C10—C159.3 (2)C21—C19—C20—C3061.3 (4)
C8—C9—C10—C1169.06 (17)C20—C19—C21—C22124.1 (2)
C11—C9—C10—C2559.3 (2)C18—C19—C21—C220.2 (3)
C8—C9—C10—C2572.4 (2)C19—C21—C22—C1724.6 (3)
C11—C9—C10—C5175.12 (18)C16—C17—C22—C21155.9 (2)
C8—C9—C10—C553.2 (2)C28—C17—C22—C2182.2 (2)
C8—C9—C11—C1255.0 (3)C18—C17—C22—C2138.9 (3)
C10—C9—C11—C12170.47 (19)C16—C17—C28—O228.9 (3)
C9—C11—C12—C1352.4 (3)C18—C17—C28—O2151.4 (3)
C11—C12—C13—C18178.50 (19)C22—C17—C28—O297.3 (3)
C11—C12—C13—C1455.3 (3)C16—C17—C28—O3154.5 (3)
C12—C13—C14—C15178.84 (18)C18—C17—C28—O332.0 (4)
C18—C13—C14—C1549.9 (2)C22—C17—C28—O379.3 (3)
C12—C13—C14—C2761.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.821.762.571 (3)170
O1—H1···O2i0.821.952.753 (3)165
O4—H4···O1ii0.821.832.640 (3)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.821.762.571 (3)170
O1—H1···O2i0.821.952.753 (3)165
O4—H4···O1ii0.821.832.640 (3)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Guangdong Province (No·S2013020012864), the National Natural Science Foundation of China (Nos. 81273390, 81202429, 81473116) and the Program of the Pearl River Young Talents of Science and Technology in Guangzhou, China (2013J2200051).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBabalola, I. T., Shode, F. O., Adelakun, E. A., Opoku, A. R. & Mosa, R. A. (2013). J. Pharmacogn. Phytochem. 1, 54–60.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFulda, S., Jeremias, I., Steiner, H. H., Pietsch, T. & Debatin, K. M. (1999). Int. J. Cancer, 82, 435–441.  CrossRef PubMed CAS Google Scholar
First citationHeidary Navid, M., Laszczyk-Lauer, M. N., Reichling, J. & Schnitzler, P. (2014). Phytomedicine, 21, 1273–1280.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKashiwada, Y., Hashimoto, F., Cosentino, L. M., Chen, C. H., Garrett, P. E. & Lee, K. H. (1996). Planta Med. 65, 740–743.  Google Scholar
First citationLiu, J., Zhang, H. F., He, G. Q., Li, X. L., Fu, M. L. & Chen, Q. H. (2009). Sci. Technol. Food Ind. 10, 360–366.  Google Scholar
First citationSafe, H., Prather, P. L., Brents, L. K., Chadalapaka, G. & Jutooru, I. (2012). Anti-Cancer Agent Med. Chem. 12, 1211–1220  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Y., Gong, N. B., Yang, S. Y., Du, G. H. & Lu, Y. (2014). J. Pharm. Sci. 103, 2696–2703.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYadav, A. K. & Gupta, M. M. (2014). JPC J. Planar Chromatogr. Mod. TLC, 27, 174–180.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1242-o1243
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds