organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-chloro-N-{[1-(4-chloro­benzo­yl)piperidin-4-yl]meth­yl}benzamide monohydrate

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 24 July 2014; accepted 14 August 2014; online 3 September 2014)

In the title compound, C20H20Cl2N2O2·H2O, the piperidine ring adopts a chair conformation with the two substituent benzene rings inclined to one another [dihedral angle 84.63 (9)°]. In the crystal, the components are linked by Ow—H⋯O, N—H⋯Ow (w = water) and C—H⋯O hydrogen bonds, generating a sheet structure lying parallel to (101).

1. Related literature

For the synthesis of the title compound, see: Prathebha et al. (2013[Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.]). For the biological activity of piperdine derivatives, see: Parthiban et al. (2005[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523-538.], 2009[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981-2985.], 2011[Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678-6686.]). For related structures, see: Prathebha et al. (2013[Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.], 2014[Prathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.]); Ávila et al. (2010[Ávila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H20Cl2N2O2·H2O

  • Mr = 409.30

  • Monoclinic, P 21 /n

  • a = 8.965 (5) Å

  • b = 19.613 (5) Å

  • c = 11.456 (5) Å

  • β = 96.989 (5)°

  • V = 1999.3 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker APEII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.966

  • 18886 measured reflections

  • 4985 independent reflections

  • 2967 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.03

  • 4985 reflections

  • 252 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.19 3.043 (2) 171
O1W—H1WA⋯O2ii 0.87 (2) 2.11 (2) 2.972 (3) 169 (4)
O1W—H1WB⋯O1 0.87 (2) 1.96 (3) 2.802 (3) 163 (7)
C5—H5⋯O2i 0.93 2.36 3.212 (3) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine and its derivatives have a high impact factor on the medical field due to their wide range of pharmacological activities. The piperidone molecule is also an important pharmacophore due to its broad-spectrum of biological actions ranging from anti-bacterial to anti-cancer (Parthiban et al., 2005; 2009; 2011). The biological properties of these compounds are highly dependent on the type and location of substituents on the heterocyclic ring. We report in this communication, the synthesis and crystal structure of a new piperidine derivative, the title compound C20H20Cl2N2O2 . H2O.

In the title compound (Fig. 1), the bond lengths in the substituted benzene rings A and B are in good agreement with literature values. The piperidine ring is linked to these phenyl rings through a carbonyl group in a trans orientation. The C—N distances [1.335 (2)–1.464 (2)Å] are in the normal range and are in good agreement those in similar reported structures (Ávila et al., 2010; Prathebha et al., 2014). The bond angles around the N1 and N2 atoms [359.3 (4)° and 360.07 (1)°, respectively], show sp3 hybridization of the atoms. The presence of the carbonyl group linking the A and B rings contracts the bond angles C2—C1—C6 and C20—C15—C16 [118.17 (2) and 119.43 (2) Å, respectively] and expands the bond angles C3—C4—C5 and C17—C18—C19 [121.04 (2) Å and 121.51 (2) Å, respectively]. The bnzene rings A and B form dihedral angles of 53.9 (1)° and 43.7 (1)°, respectively, with the piperidine ring system. The piperidine ring (C13/C14/C15/C16/C17/N1) adopts a chair conformation with puckering parameters of q2 = 0.0184 (2) Å, ϕ2 = 35.47(6.16)°, q3 = 0.5583 (2) Å, QT = 0.5586 (2) Å and θ2 = 1.88 (2)°.

In the crystal, intermolecular water O—H···O hydrogen bonds form chains running along the b axis (Table 1). These chains are in turn linked by N—H···O and C—H···O hydrogen bonds giving a two-dimensional supramolecular layered structure lying parallel to (101) (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Prathebha et al. (2013, 2014). For the biological activity of piperdine derivatives, see: Parthiban et al. (2005, 2009, 2011). For related structures, see: Prathebha et al. (2014); Ávila et al. (2010).

Experimental top

The procedure (Prathebha et al., 2013; 2014) adopted in the synthesis of the typical diamide is re-presented here (Fig. 3). To 4-aminomethylpiperidine (0.02 mol) in a 250 mL round-bottomed flask, 120 mL of ethyl methyl ketone was added and stirred at room temperature. After 5 minutes, triethylamine (0.04 mol) was added and the mixture was stirred for 15 minutes. 4-Chlorobenzoyl chloride (0.04 mol) was then added and the reaction mixture was stirred at room temperature for about 2 h. A white precipitate of triethylammonium chloride was formed. It was filtered and the filtrate was evaporated to obtain the crude product which was recrystallized twice from ethyl methyl ketone: yield: 82%.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms with C—H = 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.87 Å with U iso(H) = 1.5Ueq(C-methyl) = 1.2Ueq(N,C). The Uiso of the water H-atom were refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the unit cell, viewed along a. Dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. Experimental procedure
4-hloro-N-{[1-(4-chlorobenzoyl)piperidin-4-yl]methyl}benzamide top
Crystal data top
C20H20Cl2N2O2·H2OZ = 4
Mr = 409.30F(000) = 856
Monoclinic, P21/nDx = 1.360 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.965 (5) ÅCell parameters from 4985 reflections
b = 19.613 (5) ŵ = 0.35 mm1
c = 11.456 (5) ÅT = 293 K
β = 96.989 (5)°Block, colourless
V = 1999.3 (15) Å30.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEII CCD
diffractometer
4985 independent reflections
Radiation source: fine-focus sealed tube2967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.939, Tmax = 0.966k = 2626
18886 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.401P]
where P = (Fo2 + 2Fc2)/3
4985 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H20Cl2N2O2·H2OV = 1999.3 (15) Å3
Mr = 409.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.965 (5) ŵ = 0.35 mm1
b = 19.613 (5) ÅT = 293 K
c = 11.456 (5) Å0.20 × 0.15 × 0.10 mm
β = 96.989 (5)°
Data collection top
Bruker APEII CCD
diffractometer
4985 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2967 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.966Rint = 0.030
18886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
4985 reflectionsΔρmin = 0.30 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2856 (2)0.04517 (10)0.36865 (17)0.0557 (5)
C20.1651 (2)0.05009 (11)0.30553 (18)0.0604 (5)
H20.06760.04480.34260.072*
C30.1908 (2)0.06295 (10)0.18659 (17)0.0548 (5)
H30.10960.06580.14340.066*
C40.33501 (19)0.07168 (9)0.13004 (15)0.0445 (4)
C50.4537 (2)0.06734 (10)0.19643 (16)0.0508 (5)
H50.55130.07340.16010.061*
C60.4299 (2)0.05428 (11)0.31542 (17)0.0550 (5)
H60.51050.05170.35910.066*
C70.3542 (2)0.08172 (10)0.00066 (16)0.0499 (5)
C80.5234 (2)0.10784 (10)0.17983 (15)0.0525 (5)
H8A0.62090.08720.20270.063*
H8B0.44970.08200.21670.063*
C90.52633 (19)0.18034 (10)0.22638 (14)0.0443 (4)
H90.59990.20630.18770.053*
C100.5769 (2)0.18086 (10)0.35899 (15)0.0502 (5)
H10A0.50850.15330.39860.060*
H10B0.67640.16100.37450.060*
C110.5798 (2)0.25282 (11)0.40699 (15)0.0520 (5)
H11A0.60680.25170.49160.062*
H11B0.65530.27920.37310.062*
C120.3794 (2)0.28733 (11)0.25369 (15)0.0537 (5)
H12A0.44540.31590.21360.064*
H12B0.27940.30700.24180.064*
C130.3756 (2)0.21620 (10)0.20237 (15)0.0487 (4)
H13A0.34690.21890.11810.058*
H13B0.30000.18950.23570.058*
C140.3605 (2)0.32021 (10)0.45609 (15)0.0447 (4)
C150.41215 (19)0.31470 (9)0.58496 (14)0.0419 (4)
C160.4207 (2)0.25291 (10)0.64373 (16)0.0513 (5)
H160.39910.21260.60230.062*
C170.4615 (2)0.25100 (11)0.76433 (17)0.0561 (5)
H170.46680.20960.80430.067*
C180.4939 (2)0.31065 (11)0.82394 (15)0.0533 (5)
C190.4847 (2)0.37221 (11)0.76756 (16)0.0558 (5)
H190.50660.41230.80950.067*
C200.4425 (2)0.37407 (10)0.64751 (15)0.0492 (4)
H200.43450.41580.60860.059*
N10.48785 (17)0.10246 (8)0.05253 (13)0.0504 (4)
H10.55600.11310.00900.061*
N20.43298 (16)0.28557 (8)0.37952 (12)0.0483 (4)
O10.24827 (16)0.07042 (10)0.05634 (13)0.0782 (5)
O20.25144 (15)0.35694 (7)0.42328 (11)0.0607 (4)
O1W0.1758 (2)0.02509 (12)0.22242 (18)0.0874 (5)
Cl10.25541 (8)0.02408 (4)0.51685 (5)0.0906 (2)
Cl20.54727 (9)0.30789 (4)0.97486 (4)0.0908 (2)
H1WA0.188 (5)0.0575 (19)0.172 (3)0.19 (2)*
H1WB0.181 (9)0.002 (4)0.162 (5)0.34 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0626 (12)0.0528 (13)0.0495 (10)0.0066 (10)0.0011 (9)0.0074 (9)
C20.0482 (11)0.0644 (14)0.0657 (13)0.0005 (10)0.0047 (9)0.0062 (10)
C30.0457 (10)0.0572 (13)0.0622 (12)0.0030 (9)0.0088 (9)0.0050 (10)
C40.0466 (10)0.0346 (10)0.0528 (10)0.0020 (8)0.0076 (8)0.0052 (8)
C50.0447 (10)0.0519 (12)0.0556 (11)0.0026 (9)0.0056 (8)0.0118 (9)
C60.0534 (11)0.0591 (13)0.0539 (11)0.0027 (9)0.0119 (9)0.0091 (9)
C70.0498 (11)0.0476 (12)0.0538 (10)0.0021 (9)0.0121 (9)0.0048 (9)
C80.0574 (11)0.0545 (13)0.0458 (10)0.0015 (9)0.0073 (8)0.0021 (9)
C90.0436 (9)0.0514 (12)0.0384 (8)0.0011 (8)0.0074 (7)0.0037 (8)
C100.0437 (10)0.0646 (14)0.0420 (9)0.0108 (9)0.0035 (7)0.0027 (9)
C110.0414 (10)0.0711 (14)0.0427 (9)0.0064 (9)0.0013 (7)0.0124 (9)
C120.0588 (11)0.0613 (13)0.0396 (9)0.0121 (10)0.0000 (8)0.0028 (9)
C130.0477 (10)0.0586 (12)0.0386 (8)0.0028 (9)0.0001 (7)0.0037 (8)
C140.0462 (10)0.0449 (11)0.0431 (9)0.0019 (9)0.0064 (7)0.0014 (8)
C150.0413 (9)0.0459 (11)0.0392 (8)0.0041 (8)0.0083 (7)0.0010 (8)
C160.0591 (11)0.0428 (11)0.0520 (10)0.0007 (9)0.0068 (8)0.0011 (9)
C170.0653 (12)0.0505 (13)0.0532 (11)0.0020 (10)0.0098 (9)0.0136 (10)
C180.0575 (11)0.0655 (14)0.0379 (9)0.0043 (10)0.0104 (8)0.0034 (9)
C190.0689 (13)0.0513 (13)0.0472 (10)0.0008 (10)0.0072 (9)0.0079 (9)
C200.0597 (11)0.0425 (11)0.0459 (9)0.0018 (9)0.0080 (8)0.0027 (8)
N10.0529 (9)0.0543 (10)0.0456 (8)0.0062 (8)0.0124 (7)0.0097 (7)
N20.0454 (8)0.0599 (10)0.0389 (7)0.0093 (7)0.0016 (6)0.0078 (7)
O10.0602 (9)0.1147 (14)0.0636 (9)0.0184 (9)0.0238 (7)0.0073 (9)
O20.0645 (8)0.0697 (10)0.0478 (7)0.0263 (7)0.0061 (6)0.0034 (7)
O1W0.0768 (11)0.1049 (15)0.0855 (12)0.0057 (10)0.0296 (9)0.0120 (12)
Cl10.0863 (4)0.1263 (6)0.0551 (3)0.0222 (4)0.0080 (3)0.0227 (3)
Cl20.1259 (6)0.1059 (6)0.0391 (3)0.0055 (4)0.0041 (3)0.0075 (3)
Geometric parameters (Å, º) top
C1—C61.373 (3)C11—H11A0.9700
C1—C21.374 (3)C11—H11B0.9700
C1—Cl11.736 (2)C12—N21.463 (2)
C2—C31.377 (3)C12—C131.513 (3)
C2—H20.9300C12—H12A0.9700
C3—C41.385 (3)C12—H12B0.9700
C3—H30.9300C13—H13A0.9700
C4—C51.384 (3)C13—H13B0.9700
C4—C71.499 (2)C14—O21.235 (2)
C5—C61.378 (3)C14—N21.339 (2)
C5—H50.9300C14—C151.496 (2)
C6—H60.9300C15—C201.377 (3)
C7—O11.227 (2)C15—C161.384 (3)
C7—N11.334 (2)C16—C171.386 (3)
C8—N11.458 (2)C16—H160.9300
C8—C91.518 (3)C17—C181.368 (3)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—C191.367 (3)
C9—C131.518 (3)C18—Cl21.738 (2)
C9—C101.532 (2)C19—C201.382 (2)
C9—H90.9800C19—H190.9300
C10—C111.514 (3)C20—H200.9300
C10—H10A0.9700N1—H10.8600
C10—H10B0.9700O1W—H1WA0.872 (19)
C11—N21.464 (2)O1W—H1WB0.87 (2)
C6—C1—C2121.02 (19)C10—C11—H11B109.5
C6—C1—Cl1119.43 (16)H11A—C11—H11B108.1
C2—C1—Cl1119.50 (16)N2—C12—C13110.51 (15)
C1—C2—C3119.08 (18)N2—C12—H12A109.5
C1—C2—H2120.5C13—C12—H12A109.5
C3—C2—H2120.5N2—C12—H12B109.5
C2—C3—C4121.31 (18)C13—C12—H12B109.5
C2—C3—H3119.3H12A—C12—H12B108.1
C4—C3—H3119.3C12—C13—C9112.27 (15)
C5—C4—C3118.16 (17)C12—C13—H13A109.1
C5—C4—C7123.68 (16)C9—C13—H13A109.1
C3—C4—C7118.08 (16)C12—C13—H13B109.1
C6—C5—C4121.20 (17)C9—C13—H13B109.1
C6—C5—H5119.4H13A—C13—H13B107.9
C4—C5—H5119.4O2—C14—N2121.73 (16)
C1—C6—C5119.21 (18)O2—C14—C15118.73 (15)
C1—C6—H6120.4N2—C14—C15119.53 (15)
C5—C6—H6120.4C20—C15—C16119.44 (16)
O1—C7—N1122.23 (18)C20—C15—C14118.05 (16)
O1—C7—C4119.57 (17)C16—C15—C14122.37 (16)
N1—C7—C4118.20 (16)C15—C16—C17120.06 (18)
N1—C8—C9114.30 (15)C15—C16—H16120.0
N1—C8—H8A108.7C17—C16—H16120.0
C9—C8—H8A108.7C18—C17—C16119.27 (19)
N1—C8—H8B108.7C18—C17—H17120.4
C9—C8—H8B108.7C16—C17—H17120.4
H8A—C8—H8B107.6C17—C18—C19121.51 (17)
C8—C9—C13113.17 (15)C17—C18—Cl2119.09 (16)
C8—C9—C10110.19 (15)C19—C18—Cl2119.40 (16)
C13—C9—C10109.02 (14)C18—C19—C20119.14 (19)
C8—C9—H9108.1C18—C19—H19120.4
C13—C9—H9108.1C20—C19—H19120.4
C10—C9—H9108.1C15—C20—C19120.57 (18)
C11—C10—C9110.88 (16)C15—C20—H20119.7
C11—C10—H10A109.5C19—C20—H20119.7
C9—C10—H10A109.5C7—N1—C8122.88 (15)
C11—C10—H10B109.5C7—N1—H1118.6
C9—C10—H10B109.5C8—N1—H1118.6
H10A—C10—H10B108.1C14—N2—C11125.27 (14)
N2—C11—C10110.84 (15)C14—N2—C12120.41 (15)
N2—C11—H11A109.5C11—N2—C12113.62 (14)
C10—C11—H11A109.5H1WA—O1W—H1WB84 (5)
N2—C11—H11B109.5
C6—C1—C2—C31.4 (3)O2—C14—C15—C16122.3 (2)
Cl1—C1—C2—C3176.28 (17)N2—C14—C15—C1657.7 (2)
C1—C2—C3—C40.7 (3)C20—C15—C16—C170.8 (3)
C2—C3—C4—C50.2 (3)C14—C15—C16—C17176.49 (16)
C2—C3—C4—C7176.73 (19)C15—C16—C17—C180.4 (3)
C3—C4—C5—C60.4 (3)C16—C17—C18—C191.0 (3)
C7—C4—C5—C6176.32 (18)C16—C17—C18—Cl2179.19 (14)
C2—C1—C6—C51.2 (3)C17—C18—C19—C200.3 (3)
Cl1—C1—C6—C5176.49 (16)Cl2—C18—C19—C20179.87 (14)
C4—C5—C6—C10.3 (3)C16—C15—C20—C191.5 (3)
C5—C4—C7—O1164.2 (2)C14—C15—C20—C19177.37 (16)
C3—C4—C7—O112.5 (3)C18—C19—C20—C151.0 (3)
C5—C4—C7—N115.3 (3)O1—C7—N1—C85.4 (3)
C3—C4—C7—N1167.93 (18)C4—C7—N1—C8174.18 (16)
N1—C8—C9—C1362.2 (2)C9—C8—N1—C7104.7 (2)
N1—C8—C9—C10175.49 (14)O2—C14—N2—C11166.40 (19)
C8—C9—C10—C11179.77 (15)C15—C14—N2—C1113.5 (3)
C13—C9—C10—C1155.0 (2)O2—C14—N2—C123.4 (3)
C9—C10—C11—N256.1 (2)C15—C14—N2—C12176.71 (17)
N2—C12—C13—C954.7 (2)C10—C11—N2—C14132.70 (18)
C8—C9—C13—C12177.72 (15)C10—C11—N2—C1256.9 (2)
C10—C9—C13—C1254.7 (2)C13—C12—N2—C14133.45 (18)
O2—C14—C15—C2053.4 (2)C13—C12—N2—C1155.7 (2)
N2—C14—C15—C20126.55 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.193.043 (2)171
O1W—H1WA···O2ii0.87 (2)2.11 (2)2.972 (3)169 (4)
O1W—H1WB···O10.87 (2)1.96 (3)2.802 (3)163 (7)
C5—H5···O2i0.932.363.212 (3)152
C8—H8B···O10.972.432.789 (3)102
C12—H12B···O20.972.342.738 (2)104
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.193.043 (2)171
O1W—H1WA···O2ii0.872 (19)2.11 (2)2.972 (3)169 (4)
O1W—H1WB···O10.87 (2)1.96 (3)2.802 (3)163 (7)
C5—H5···O2i0.932.363.212 (3)152
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan of the Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

References

First citationÁvila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523–538.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.  CSD CrossRef IUCr Journals Google Scholar
First citationPrathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds