organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1301-o1302

N2-(4-Meth­­oxy­salicyl­­idene)arginine hemihydrate

aDepartment of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu, India, bSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh, India, and cDepartment of Physics, The New College (Autonomous), Chennai 600 014, TamilNadu, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 19 June 2013; accepted 16 July 2013; online 24 July 2013)

The title compound, C14H20N4O4·0.5H2O [systematic name: (2S)-5-{[amino­(iminium­yl)meth­yl]amino}-2-{[(1Z)-4-meth­oxy-2-oxido­benzyl­idene]aza­nium­yl}penta­noate hemihydrate], has been synthesized by the reaction of L-arginine and 4-meth­oxy­salicyl­aldehyde and crystallizes with two independent substituted L-arginine mol­ecules and one water mol­ecule of solvation in the asymmetric unit. Each mol­ecule exists as a zwitterion and adopts a Z configuration about the central C=N. The mol­ecular conformation is stabilized by strong intra­molecular N—H⋯O hydrogen bonds that generate S(6) and S(10) ring motifs. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds involving also the water mol­ecule and weak inter­molecular C—H⋯Owater inter­actions link the mol­ecules into an infinite one-dimensional ribbon structure extending along the b axis. The known (2S) absolute configuration for L-arginine was invoked. Weak intermolecular C—H⋯π interactions are also present.

Related literature

For the synthesis of similar compounds, see: Srinivasan et al. (1986[Srinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309-2320.]); Moutet & Ourari (1997[Moutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525-2531.]). For general background on Schiff bases, see: von Konig et al. (1982[Konig, A. von, Moll, F. & Rosenhahn, L. (1982). US Patent 4358531.]); Lewis et al. (2009[Lewis, J., Matteucci, M., Chen, T. & Jiao, H. (2009). WO Patent 2009140553 A2.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Oueslati et al. (2007[Oueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49-58.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N4O4·0.5H2O

  • Mr = 317.35

  • Monoclinic, P 21

  • a = 10.1828 (11) Å

  • b = 10.3414 (11) Å

  • c = 15.5542 (16) Å

  • β = 102.688 (2)°

  • V = 1597.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.976

  • 18648 measured reflections

  • 7483 independent reflections

  • 5859 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.167

  • S = 1.10

  • 7483 reflections

  • 452 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.89 (1) 1.94 (3) 2.638 (4) 134 (3)
N4—H4A⋯O4 0.90 (1) 2.06 (1) 2.935 (4) 165 (3)
N5—H5⋯O6 0.90 (1) 1.90 (3) 2.600 (4) 134 (3)
N8—H8A⋯O7 0.90 (1) 2.03 (1) 2.914 (4) 166 (3)
N2—H2⋯O2i 0.86 1.92 2.758 (4) 166
N3—H3A⋯O3i 0.89 (1) 2.58 (3) 3.333 (4) 142 (3)
N3—H3B⋯O4ii 0.89 (1) 1.93 (1) 2.817 (4) 175 (4)
N4—H4B⋯O3ii 0.89 (1) 2.03 (1) 2.912 (4) 171 (3)
N6—H6⋯O6iii 0.86 1.89 2.705 (4) 158
N7—H7A⋯O8iii 0.89 (1) 2.50 (3) 3.202 (4) 135 (3)
N7—H7B⋯O7iv 0.90 (1) 1.91 (1) 2.800 (4) 173 (3)
N8—H8B⋯O8iv 0.89 (1) 2.05 (2) 2.911 (4) 161 (3)
O1W—H2W⋯O3v 0.94 (1) 1.98 (2) 2.881 (5) 159 (6)
C15—H15C⋯O1Wi 0.96 2.56 3.451 (7) 155
C22—H22⋯O1W 0.93 2.53 3.359 (6) 149
C1—H1CCg1vi 0.96 2.96 3.669 (4) 132
C15—H15CCg2vii 0.96 2.98 3.762 (5) 139
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) x+1, y, z; (vi) [-x, y-{\script{1\over 2}}, -z+1]; (vii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The Schiff base ligands derived from salicylaldehyde derivatives have been found to be excellent chelating agents for most applications in coordination chemistry such as in catalysis (Srinivasan et al., 1986) and electrocatalysis (Moutet & Ourari, 1997). Schiff bases of the general type p-R'-C6H4—CHN—C6H4R"-p are well known reagents that find their practical application in various areas, e.g. photography (von Konig et al., 1982) and medicinal and pharmaceutical chemistry (Lewis et al., 2009). Here, we report the synthesis of the title compound, C14H20N4O4. 0.5H2O [systematic name: (2S)-5- {[amino(iminio)methyl]amino}-2-{[(1Z)-(4-methoxy-2-oxidophenyl) methylene]ammonio}pentanoate hemihydrate] and the structure is reported herein.

This compound crystallizes with two independent substituted L-arginine molecules (A and B), together with one water molecule of solvation in the asymmetric unit (Fig. 1). Each molecule exists as a zwitterion and adopts a Z configuration about the central iminium CN functional group which is coplanar with the adjacent benzene ring. The known (2S) absolute configuration for L-arginine was invoked for the trivially named chiral centres at C9 and C23. The C—N bond distances of the NH2 groups(N3—C14, N4—C14, N7—C28 and N8—C28) are 1.332 (6), 1.319 (6), 1.328 (6) and 1.322 (5) Å, respectively, which is short for a C—N single bond, but still not quite as contracted as one would expect for a fully established CN. These bond length features are consistent with an imino resonance form as is commonly found for C—N single bonds involving sp2 hybridized C and N atoms (Oueslati et al., 2007). The bond distances C6—O2, C10—O3, C10—O4, C20—O6, C24—O7 and C24—O8 [1.284 (5), 1.248 (6), 1.239 (5), 1.285 (5), 1.253 (5) and 1.237 (5) Å, respectively], clearly indicate the presence of CO double bonds, including those also generated through resonance. The H atoms attached to the phenolic groups (O2 and O6) are transferred to the basic centres N1 and N5 respectively, generating the iminium groups. Also, the carboxylic H-atoms on O4 and O7 have been transferred to N4 and N8, respectively, to generate the common amino acid zwitterions.

In both molecules A and B, all nitrogen H-atoms are involved in hydrogen bonding (Table 1). In each, intramolecular N—H···O hydrogen bonds lead to the formation of a six- and a ten-membered ring motif [S(6) and S(10), respectively (Bernstein et al., 1995)] (Fig.1). Intermolecular N—H···O and O—H···O hydrogen bonds involving also the water molecule and weak intermolecular C—H···Owater interactions link the molecules into an infinite one-dimensional ribbon structure extending along the b axis (Fig. 2). Present also are weak intermolecular C—H..π interactions.

Related literature top

For the synthesis of similar compounds, see: Srinivasan et al. (1986); Moutet & Ourari (1997). For general background on Schiff bases, see: von Konig et al. (1982); Lewis et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Oueslati et al. (2007).

Experimental top

L-Arginine and 4-methoxy salicylaldehyde (E-Merck- analar grades) were mixed in 1:1 stoichiometric proportions and dissolved in a triply distilled water–ethanol mixture using a mechanical stirrer for about four hours. The raw reaction product was removed by filtration, then re-dissolved in a water–ethanol solvent mixture and kept aside to allow crystal growth at ambient temperature. Bright yellowish crystals formed in 3 days and on removal were recrystallized several times to obtain the crystal specimen used in the X-ray analysis.

Refinement top

The H atoms were positioned geometrically, with methyl C—H distances of 0.96 Å (methylene), 0.93 Å (aromatic) and the N2—H and N6—H distances of 0.86 Å, and were refined as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq of the parent atom. The remaining N—H atoms and water molecule H atoms were located from a difference Fourier map and refined with distance restraints [N—H = 0.90 (2) and O—H = 0.91 (2) Å] with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). The known (2S) absolute configuration for L-arginine was invoked at the trivially numbered chiral centres of the A and B molecules (C9 and C23, respectively) (Flack parameter: 0.01 (14) for 3448 Friedel pairs).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the two independent substituted L-arginine molecules and the water molecule of solvation in the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level and intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate intra and intermolecular N—H···O and O—H···O hydrogen bonds and weak C—H···O intermolecular interactions.
(2S)-5-{[Amino(iminiumyl)methyl]amino}-2-{[(1Z)-4-methoxy-2-oxidobenzylidene]azaniumyl}pentanoate hemihydrate top
Crystal data top
C14H20N4O4·0.5H2OF(000) = 676
Mr = 317.35Dx = 1.319 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3158 reflections
a = 10.1828 (11) Åθ = 2.5–31.2°
b = 10.3414 (11) ŵ = 0.10 mm1
c = 15.5542 (16) ÅT = 293 K
β = 102.688 (2)°Block, yellow
V = 1597.9 (3) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD-detector
diffractometer
7483 independent reflections
Radiation source: fine-focus sealed tube5859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.971, Tmax = 0.976k = 1313
18648 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.2262P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
7483 reflectionsΔρmax = 0.25 e Å3
452 parametersΔρmin = 0.21 e Å3
14 restraintsAbsolute structure: Flack (1983), 3448 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (14)
Crystal data top
C14H20N4O4·0.5H2OV = 1597.9 (3) Å3
Mr = 317.35Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.1828 (11) ŵ = 0.10 mm1
b = 10.3414 (11) ÅT = 293 K
c = 15.5542 (16) Å0.30 × 0.30 × 0.25 mm
β = 102.688 (2)°
Data collection top
Bruker Kappa APEXII CCD-detector
diffractometer
7483 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5859 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.036
18648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167Δρmax = 0.25 e Å3
S = 1.10Δρmin = 0.21 e Å3
7483 reflectionsAbsolute structure: Flack (1983), 3448 Friedel pairs
452 parametersAbsolute structure parameter: 0.1 (14)
14 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1564 (4)1.2584 (4)0.5422 (3)0.0774 (13)
H1A0.16691.32310.58740.116*
H1B0.06601.26070.50740.116*
H1C0.21851.27500.50510.116*
C20.1744 (3)1.0292 (4)0.5285 (2)0.0536 (8)
C30.2238 (4)0.9149 (4)0.5704 (2)0.0566 (9)
H30.25720.91290.63100.068*
C40.2224 (3)0.8064 (4)0.5214 (2)0.0515 (8)
H40.25710.73030.54920.062*
C50.1703 (3)0.8047 (3)0.4296 (2)0.0444 (7)
C60.1152 (4)0.9209 (3)0.3871 (2)0.0487 (8)
C70.1196 (4)1.0328 (4)0.4389 (2)0.0559 (9)
H70.08531.11010.41270.067*
C80.1721 (3)0.6905 (3)0.3831 (2)0.0471 (7)
H80.21090.61850.41460.057*
C90.1152 (3)0.5543 (3)0.2513 (2)0.0462 (7)
H90.20550.51670.25980.055*
C100.0613 (4)0.5805 (3)0.1526 (2)0.0499 (8)
C110.0248 (4)0.4611 (3)0.2890 (2)0.0521 (8)
H11A0.06450.44840.35100.063*
H11B0.06180.50250.28490.063*
C120.0006 (4)0.3291 (3)0.2457 (2)0.0496 (8)
H12A0.05340.27790.27730.059*
H12B0.05100.34010.18590.059*
C130.1279 (4)0.2552 (3)0.2433 (2)0.0524 (8)
H13A0.18270.30570.21200.063*
H13B0.17920.24200.30300.063*
C140.0664 (3)0.1157 (3)0.1148 (2)0.0474 (7)
C150.6713 (5)0.0130 (4)0.0132 (3)0.0757 (12)
H15A0.69710.07570.02550.114*
H15B0.57570.01690.00820.114*
H15C0.71650.03130.07280.114*
C160.6801 (4)0.2145 (4)0.0364 (2)0.0574 (9)
C170.7369 (4)0.3301 (4)0.0165 (2)0.0575 (9)
H170.78660.33240.02700.069*
C180.7196 (4)0.4378 (4)0.0602 (2)0.0551 (8)
H180.75870.51460.04720.066*
C190.6423 (3)0.4371 (3)0.1264 (2)0.0494 (8)
C200.5796 (4)0.3217 (3)0.1448 (2)0.0573 (9)
C210.6024 (4)0.2094 (4)0.0976 (2)0.0631 (10)
H210.56390.13130.10860.076*
C220.6243 (3)0.5520 (3)0.1693 (2)0.0480 (7)
H220.66770.62540.15500.058*
C230.5306 (4)0.6853 (3)0.2695 (2)0.0463 (7)
H230.61410.73570.28000.056*
C240.4951 (3)0.6572 (3)0.3579 (2)0.0470 (8)
C250.4207 (4)0.7613 (3)0.2061 (2)0.0532 (8)
H25A0.44900.77380.15100.064*
H25B0.33920.70970.19350.064*
C260.3882 (4)0.8927 (3)0.2403 (2)0.0550 (9)
H26A0.32010.93480.19560.066*
H26B0.35090.88030.29200.066*
C270.5096 (4)0.9796 (3)0.2639 (2)0.0582 (9)
H27A0.57800.93660.30780.070*
H27B0.54600.99250.21190.070*
C280.4773 (3)1.1249 (3)0.3797 (2)0.0456 (7)
N10.1241 (3)0.6759 (3)0.29926 (18)0.0476 (6)
N20.0979 (3)0.1312 (3)0.20033 (17)0.0545 (7)
H20.10090.06370.23300.065*
N30.0323 (4)0.0009 (3)0.0810 (2)0.0585 (8)
N40.0709 (3)0.2127 (3)0.06010 (18)0.0525 (7)
N50.5525 (3)0.5643 (3)0.22704 (17)0.0482 (6)
N60.4817 (4)1.1051 (3)0.29785 (19)0.0597 (8)
H60.46741.16950.26200.072*
N70.4545 (3)1.2428 (3)0.40673 (19)0.0524 (7)
N80.4954 (4)1.0294 (3)0.43757 (19)0.0575 (8)
O10.1831 (3)1.1333 (3)0.58193 (18)0.0720 (8)
O20.0628 (3)0.9232 (2)0.30397 (14)0.0621 (7)
O30.0088 (3)0.6877 (3)0.13073 (16)0.0692 (8)
O40.0710 (3)0.4893 (2)0.10247 (15)0.0584 (6)
O50.7073 (3)0.1124 (3)0.01041 (17)0.0733 (8)
O60.5054 (3)0.3186 (3)0.20185 (19)0.0779 (9)
O70.5093 (3)0.7516 (3)0.40963 (15)0.0587 (6)
O80.4554 (3)0.5477 (2)0.37124 (16)0.0586 (6)
O1W0.8113 (4)0.8224 (5)0.2043 (3)0.1180 (13)
H1W0.834 (6)0.892 (5)0.244 (4)0.177*
H2W0.889 (4)0.783 (6)0.194 (5)0.177*
H4A0.081 (3)0.2932 (15)0.082 (2)0.044 (9)*
H7A0.459 (4)1.306 (3)0.3681 (19)0.058 (11)*
H4B0.056 (4)0.205 (4)0.0015 (7)0.060 (11)*
H7B0.461 (3)1.251 (3)0.4649 (8)0.047 (9)*
H8A0.492 (4)0.9466 (15)0.420 (2)0.055 (10)*
H8B0.492 (4)1.045 (4)0.4935 (10)0.056 (10)*
H3A0.021 (4)0.064 (3)0.118 (2)0.065 (12)*
H3B0.003 (3)0.009 (4)0.0228 (8)0.054 (10)*
H50.513 (3)0.493 (2)0.241 (2)0.053 (10)*
H10.083 (3)0.744 (2)0.271 (2)0.049 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (2)0.064 (3)0.102 (3)0.002 (2)0.011 (2)0.035 (3)
C20.0496 (19)0.061 (2)0.0531 (19)0.0094 (17)0.0164 (15)0.0168 (17)
C30.055 (2)0.069 (2)0.0425 (17)0.0028 (18)0.0048 (15)0.0087 (18)
C40.0464 (18)0.055 (2)0.0472 (18)0.0038 (15)0.0021 (14)0.0025 (16)
C50.0464 (17)0.0452 (17)0.0428 (16)0.0023 (14)0.0126 (14)0.0029 (14)
C60.0536 (19)0.0472 (19)0.0475 (18)0.0096 (15)0.0158 (15)0.0057 (15)
C70.065 (2)0.0477 (19)0.056 (2)0.0052 (17)0.0158 (17)0.0047 (16)
C80.0481 (18)0.0470 (17)0.0459 (17)0.0023 (15)0.0097 (14)0.0040 (15)
C90.0590 (19)0.0395 (17)0.0390 (16)0.0023 (15)0.0085 (14)0.0018 (13)
C100.062 (2)0.048 (2)0.0410 (17)0.0091 (16)0.0149 (15)0.0017 (15)
C110.075 (2)0.0420 (18)0.0416 (17)0.0030 (16)0.0188 (16)0.0003 (14)
C120.067 (2)0.0421 (17)0.0416 (16)0.0115 (16)0.0158 (15)0.0018 (14)
C130.072 (2)0.0427 (17)0.0383 (16)0.0027 (17)0.0039 (15)0.0006 (14)
C140.0542 (19)0.0400 (17)0.0479 (18)0.0086 (15)0.0110 (15)0.0007 (15)
C150.092 (3)0.056 (2)0.077 (3)0.007 (2)0.016 (2)0.017 (2)
C160.074 (2)0.057 (2)0.0395 (17)0.0196 (18)0.0091 (16)0.0011 (15)
C170.062 (2)0.070 (2)0.0436 (18)0.0046 (19)0.0186 (16)0.0002 (17)
C180.058 (2)0.058 (2)0.0509 (19)0.0003 (17)0.0150 (16)0.0013 (17)
C190.0538 (19)0.0484 (19)0.0457 (17)0.0080 (15)0.0103 (14)0.0053 (15)
C200.085 (3)0.0418 (18)0.0497 (19)0.0124 (18)0.0257 (18)0.0095 (16)
C210.098 (3)0.0403 (18)0.057 (2)0.0063 (19)0.030 (2)0.0084 (16)
C220.0561 (19)0.0436 (17)0.0435 (16)0.0008 (15)0.0090 (14)0.0040 (14)
C230.062 (2)0.0387 (16)0.0384 (16)0.0033 (15)0.0125 (14)0.0014 (13)
C240.0542 (19)0.0458 (19)0.0395 (17)0.0143 (15)0.0068 (14)0.0091 (14)
C250.071 (2)0.0432 (17)0.0397 (17)0.0071 (17)0.0006 (15)0.0000 (14)
C260.077 (2)0.0447 (18)0.0380 (17)0.0116 (17)0.0017 (16)0.0011 (14)
C270.091 (3)0.0456 (18)0.0443 (18)0.0001 (19)0.0285 (18)0.0043 (15)
C280.0564 (19)0.0407 (17)0.0414 (17)0.0062 (15)0.0144 (14)0.0009 (14)
N10.0623 (18)0.0359 (14)0.0433 (15)0.0001 (13)0.0085 (13)0.0033 (12)
N20.086 (2)0.0386 (14)0.0359 (14)0.0072 (14)0.0062 (14)0.0056 (12)
N30.090 (2)0.0406 (16)0.0440 (17)0.0011 (15)0.0131 (16)0.0001 (14)
N40.082 (2)0.0396 (15)0.0363 (14)0.0004 (14)0.0131 (14)0.0004 (12)
N50.0685 (18)0.0377 (14)0.0424 (14)0.0028 (13)0.0205 (13)0.0037 (11)
N60.104 (2)0.0340 (14)0.0457 (16)0.0022 (15)0.0258 (16)0.0065 (12)
N70.0753 (19)0.0424 (16)0.0406 (15)0.0044 (14)0.0153 (14)0.0013 (13)
N80.093 (2)0.0435 (17)0.0388 (15)0.0007 (16)0.0215 (15)0.0025 (13)
O10.083 (2)0.0680 (18)0.0646 (16)0.0093 (15)0.0160 (14)0.0276 (14)
O20.0966 (19)0.0432 (13)0.0405 (13)0.0050 (13)0.0020 (12)0.0025 (11)
O30.108 (2)0.0544 (16)0.0412 (13)0.0161 (15)0.0071 (13)0.0039 (12)
O40.0903 (19)0.0466 (13)0.0413 (12)0.0059 (13)0.0210 (12)0.0030 (11)
O50.107 (2)0.0646 (17)0.0525 (15)0.0202 (16)0.0257 (15)0.0042 (13)
O60.133 (3)0.0394 (13)0.0811 (19)0.0060 (16)0.0668 (19)0.0087 (14)
O70.0839 (18)0.0523 (14)0.0415 (12)0.0089 (13)0.0170 (12)0.0003 (11)
O80.0798 (17)0.0455 (14)0.0527 (14)0.0036 (13)0.0189 (12)0.0084 (11)
O1W0.097 (3)0.116 (3)0.136 (4)0.000 (2)0.015 (2)0.010 (3)
Geometric parameters (Å, º) top
C1—O11.434 (5)C17—C181.336 (5)
C1—H1A0.9600C17—H170.9300
C1—H1B0.9600C18—C191.428 (5)
C1—H1C0.9600C18—H180.9300
C2—O11.351 (4)C19—C221.394 (5)
C2—C71.383 (5)C19—C201.412 (5)
C2—C31.390 (5)C20—O61.286 (4)
C3—C41.355 (5)C20—C211.420 (5)
C3—H30.9300C21—H210.9300
C4—C51.409 (4)C22—N51.282 (4)
C4—H40.9300C22—H220.9300
C5—C81.388 (5)C23—N51.454 (4)
C5—C61.426 (5)C23—C241.525 (4)
C6—O21.286 (4)C23—C251.535 (5)
C6—C71.405 (5)C23—H230.9800
C7—H70.9300C24—O81.235 (4)
C8—N11.297 (4)C24—O71.253 (4)
C8—H80.9300C25—C261.523 (5)
C9—N11.455 (4)C25—H25A0.9700
C9—C111.535 (5)C25—H25B0.9700
C9—C101.537 (4)C26—C271.507 (6)
C9—H90.9800C26—H26A0.9700
C10—O41.241 (4)C26—H26B0.9700
C10—O31.245 (4)C27—N61.452 (4)
C11—C121.518 (5)C27—H27A0.9700
C11—H11A0.9700C27—H27B0.9700
C11—H11B0.9700C28—N61.300 (4)
C12—C131.512 (5)C28—N81.321 (4)
C12—H12A0.9700C28—N71.326 (4)
C12—H12B0.9700N1—H10.891 (10)
C13—N21.448 (4)N2—H20.8600
C13—H13A0.9700N3—H3A0.894 (10)
C13—H13B0.9700N3—H3B0.892 (10)
C14—N21.309 (4)N4—H4A0.898 (10)
C14—N41.323 (4)N4—H4B0.894 (10)
C14—N31.330 (4)N5—H50.896 (10)
C15—O51.418 (5)N6—H60.8600
C15—H15A0.9600N7—H7A0.893 (10)
C15—H15B0.9600N7—H7B0.896 (10)
C15—H15C0.9600N8—H8A0.898 (10)
C16—O51.346 (4)N8—H8B0.893 (10)
C16—C211.366 (5)O1W—H1W0.940 (10)
C16—C171.393 (6)O1W—H2W0.937 (10)
O1—C1—H1A109.5C19—C18—H18119.4
O1—C1—H1B109.5C22—C19—C20120.7 (3)
H1A—C1—H1B109.5C22—C19—C18119.5 (3)
O1—C1—H1C109.5C20—C19—C18119.7 (3)
H1A—C1—H1C109.5O6—C20—C19121.4 (3)
H1B—C1—H1C109.5O6—C20—C21121.5 (3)
O1—C2—C7123.8 (4)C19—C20—C21117.1 (3)
O1—C2—C3114.9 (3)C16—C21—C20120.9 (4)
C7—C2—C3121.3 (3)C16—C21—H21119.5
C4—C3—C2118.8 (3)C20—C21—H21119.5
C4—C3—H3120.6N5—C22—C19125.1 (3)
C2—C3—H3120.6N5—C22—H22117.5
C3—C4—C5122.4 (3)C19—C22—H22117.5
C3—C4—H4118.8N5—C23—C24109.6 (3)
C5—C4—H4118.8N5—C23—C25108.2 (3)
C8—C5—C4119.6 (3)C24—C23—C25113.1 (3)
C8—C5—C6121.6 (3)N5—C23—H23108.6
C4—C5—C6118.8 (3)C24—C23—H23108.6
O2—C6—C7121.0 (3)C25—C23—H23108.6
O2—C6—C5121.1 (3)O8—C24—O7127.0 (3)
C7—C6—C5117.9 (3)O8—C24—C23118.6 (3)
C2—C7—C6120.8 (4)O7—C24—C23114.5 (3)
C2—C7—H7119.6C26—C25—C23114.6 (3)
C6—C7—H7119.6C26—C25—H25A108.6
N1—C8—C5125.3 (3)C23—C25—H25A108.6
N1—C8—H8117.3C26—C25—H25B108.6
C5—C8—H8117.3C23—C25—H25B108.6
N1—C9—C11108.8 (3)H25A—C25—H25B107.6
N1—C9—C10109.1 (3)C27—C26—C25112.8 (3)
C11—C9—C10112.3 (3)C27—C26—H26A109.0
N1—C9—H9108.8C25—C26—H26A109.0
C11—C9—H9108.8C27—C26—H26B109.0
C10—C9—H9108.8C25—C26—H26B109.0
O4—C10—O3126.4 (3)H26A—C26—H26B107.8
O4—C10—C9115.6 (3)N6—C27—C26114.0 (3)
O3—C10—C9117.9 (3)N6—C27—H27A108.8
C12—C11—C9116.7 (3)C26—C27—H27A108.8
C12—C11—H11A108.1N6—C27—H27B108.8
C9—C11—H11A108.1C26—C27—H27B108.8
C12—C11—H11B108.1H27A—C27—H27B107.7
C9—C11—H11B108.1N6—C28—N8121.3 (3)
H11A—C11—H11B107.3N6—C28—N7120.1 (3)
C13—C12—C11114.1 (3)N8—C28—N7118.6 (3)
C13—C12—H12A108.7C8—N1—C9125.7 (3)
C11—C12—H12A108.7C8—N1—H1116 (2)
C13—C12—H12B108.7C9—N1—H1118 (2)
C11—C12—H12B108.7C14—N2—C13123.9 (3)
H12A—C12—H12B107.6C14—N2—H2118.0
N2—C13—C12111.3 (3)C13—N2—H2118.0
N2—C13—H13A109.4C14—N3—H3A118 (3)
C12—C13—H13A109.4C14—N3—H3B119 (2)
N2—C13—H13B109.4H3A—N3—H3B122 (4)
C12—C13—H13B109.4C14—N4—H4A118 (2)
H13A—C13—H13B108.0C14—N4—H4B125 (3)
N2—C14—N4121.7 (3)H4A—N4—H4B117 (3)
N2—C14—N3119.8 (3)C22—N5—C23124.8 (3)
N4—C14—N3118.4 (3)C22—N5—H5117 (2)
O5—C15—H15A109.5C23—N5—H5118 (2)
O5—C15—H15B109.5C28—N6—C27123.2 (3)
H15A—C15—H15B109.5C28—N6—H6118.4
O5—C15—H15C109.5C27—N6—H6118.4
H15A—C15—H15C109.5C28—N7—H7A115 (2)
H15B—C15—H15C109.5C28—N7—H7B115 (2)
O5—C16—C21124.5 (4)H7A—N7—H7B127 (3)
O5—C16—C17114.1 (3)C28—N8—H8A121 (2)
C21—C16—C17121.4 (3)C28—N8—H8B120 (2)
C18—C17—C16119.6 (3)H8A—N8—H8B118 (3)
C18—C17—H17120.2C2—O1—C1118.2 (3)
C16—C17—H17120.2C16—O5—C15118.8 (3)
C17—C18—C19121.2 (3)H1W—O1W—H2W110.4 (17)
C17—C18—H18119.4
O1—C2—C3—C4178.2 (3)C18—C19—C20—C212.6 (5)
C7—C2—C3—C42.5 (5)O5—C16—C21—C20179.4 (4)
C2—C3—C4—C51.2 (5)C17—C16—C21—C201.6 (6)
C3—C4—C5—C8179.9 (3)O6—C20—C21—C16179.2 (4)
C3—C4—C5—C61.0 (5)C19—C20—C21—C161.0 (6)
C8—C5—C6—O21.2 (5)C20—C19—C22—N50.0 (5)
C4—C5—C6—O2177.9 (3)C18—C19—C22—N5176.9 (3)
C8—C5—C6—C7178.9 (3)N5—C23—C24—O818.7 (4)
C4—C5—C6—C72.0 (4)C25—C23—C24—O8102.2 (4)
O1—C2—C7—C6179.3 (3)N5—C23—C24—O7161.9 (3)
C3—C2—C7—C61.5 (5)C25—C23—C24—O777.3 (4)
O2—C6—C7—C2179.1 (3)N5—C23—C25—C26178.7 (3)
C5—C6—C7—C20.8 (5)C24—C23—C25—C2659.7 (4)
C4—C5—C8—N1178.1 (3)C23—C25—C26—C2757.0 (4)
C6—C5—C8—N11.1 (5)C25—C26—C27—N6179.2 (3)
N1—C9—C10—O4167.8 (3)C5—C8—N1—C9174.4 (3)
C11—C9—C10—O471.5 (4)C11—C9—N1—C860.9 (4)
N1—C9—C10—O314.6 (4)C10—C9—N1—C8176.2 (3)
C11—C9—C10—O3106.2 (4)N4—C14—N2—C136.0 (5)
N1—C9—C11—C12178.7 (3)N3—C14—N2—C13175.9 (3)
C10—C9—C11—C1257.7 (4)C12—C13—N2—C1479.9 (4)
C9—C11—C12—C1355.3 (4)C19—C22—N5—C23177.9 (3)
C11—C12—C13—N2179.3 (3)C24—C23—N5—C22155.8 (3)
O5—C16—C17—C18178.4 (3)C25—C23—N5—C2280.4 (4)
C21—C16—C17—C182.5 (6)N8—C28—N6—C271.6 (6)
C16—C17—C18—C190.8 (6)N7—C28—N6—C27178.4 (3)
C17—C18—C19—C22178.7 (3)C26—C27—N6—C2883.0 (5)
C17—C18—C19—C201.8 (5)C7—C2—O1—C111.4 (5)
C22—C19—C20—O60.7 (5)C3—C2—O1—C1169.3 (3)
C18—C19—C20—O6177.6 (4)C21—C16—O5—C159.9 (6)
C22—C19—C20—C21179.5 (3)C17—C16—O5—C15171.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.89 (1)1.94 (3)2.638 (4)134 (3)
N4—H4A···O40.90 (1)2.06 (1)2.935 (4)165 (3)
N5—H5···O60.90 (1)1.90 (3)2.600 (4)134 (3)
N8—H8A···O70.90 (1)2.03 (1)2.914 (4)166 (3)
N2—H2···O2i0.861.922.758 (4)166
N3—H3A···O3i0.89 (1)2.58 (3)3.333 (4)142 (3)
N3—H3B···O4ii0.89 (1)1.93 (1)2.817 (4)175 (4)
N4—H4B···O3ii0.89 (1)2.03 (1)2.912 (4)171 (3)
N6—H6···O6iii0.861.892.705 (4)158
N7—H7A···O8iii0.89 (1)2.50 (3)3.202 (4)135 (3)
N7—H7B···O7iv0.90 (1)1.91 (1)2.800 (4)173 (3)
N8—H8B···O8iv0.89 (1)2.05 (2)2.911 (4)161 (3)
O1W—H1W···O2v0.94 (1)2.33 (6)2.882 (5)117 (4)
O1W—H2W···O3v0.94 (1)1.98 (2)2.881 (5)159 (6)
C15—H15C···O1Wi0.962.563.451 (7)155
C22—H22···O1W0.932.533.359 (6)149
C1—H1C···Cg1vi0.962.963.669 (4)132
C15—H15C···Cg2vii0.962.983.762 (5)139
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1; (v) x+1, y, z; (vi) x, y1/2, z+1; (vii) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.891 (10)1.94 (3)2.638 (4)134 (3)
N4—H4A···O40.898 (10)2.059 (14)2.935 (4)165 (3)
N5—H5···O60.896 (10)1.90 (3)2.600 (4)134 (3)
N8—H8A···O70.898 (10)2.034 (14)2.914 (4)166 (3)
N2—H2···O2i0.861.922.758 (4)166.1
N3—H3A···O3i0.894 (10)2.58 (3)3.333 (4)142 (3)
N3—H3B···O4ii0.892 (10)1.928 (12)2.817 (4)175 (4)
N4—H4B···O3ii0.894 (10)2.025 (12)2.912 (4)171 (3)
N6—H6···O6iii0.861.892.705 (4)158.4
N7—H7A···O8iii0.893 (10)2.50 (3)3.202 (4)135 (3)
N7—H7B···O7iv0.896 (10)1.909 (12)2.800 (4)173 (3)
N8—H8B···O8iv0.893 (10)2.054 (16)2.911 (4)161 (3)
O1W—H2W···O3v0.937 (10)1.98 (2)2.881 (5)159 (6)
C15—H15C···O1Wi0.962.563.451 (7)155.0
C22—H22···O1W0.932.533.359 (6)149.2
C1—H1C···Cg1vi0.962.963.669 (4)132
C15—H15C···Cg2vii0.962.983.762 (5)139
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1; (v) x+1, y, z; (vi) x, y1/2, z+1; (vii) x+1, y+1/2, z.
 

Acknowledgements

MS thanks the UGC Networking Centre, School of Chemistry, University of Hyderabad, India, for the award of a Visiting Research Fellowship to use the facilities at the School. The authors also thank for access to the X-ray diffraction equipment.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKonig, A. von, Moll, F. & Rosenhahn, L. (1982). US Patent 4358531.  Google Scholar
First citationLewis, J., Matteucci, M., Chen, T. & Jiao, H. (2009). WO Patent 2009140553 A2.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531.  CrossRef CAS Web of Science Google Scholar
First citationOueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309–2320.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1301-o1302
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds