organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O-Benzoyl­naltrexone

aDepartment of Pharmacology, Technical Center, Jiangsu Nhwa Pharma Corporation, Zhongshan Road No. 289, Xuzhou 221009, People's Republic of China, and bKey Laboratory of Coal Processing and Efficient Utilization, (Ministry of Education), China University of Mining & Technology, Xuzhou 221116, Jiangsu, People's Republic of China
*Correspondence e-mail: lix911@126.com

(Received 17 April 2013; accepted 9 June 2013; online 15 June 2013)

In the title compound, C27H27NO5 (systematic name: 17-cyclopropylmethyl-14-hydroxy-6-oxo-4,5-epoxymorphin­an-6-yl benzoate), which is the benzoate ester of the opioid receptor antagonist naltrexone, the dihedral angle between the two phenyl rings is 77.1 (1)°. In the crystal, a weak aromatic C—H⋯Ocarbox­yl hydrogen bond involving the benzoate groups of adjacent mol­ecules gives rise to a chain extending along the a-axis direction. The known absolute configuration for the mol­ecule was inferred from a previous naltrexone structure.

Related literature

For chemical properties of naltrexone, see: Fernando et al. (2008[Fernando, S.-D., Fernando, L., Francesc, L., Miguel, J. & Catalina, R.-P. (2008). Cryst. Growth Des. 8, 3219-3232.]); Beznischenko et al. (2007[Beznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325-1329.]). For related structures, see: Ledain et al. (1992[Ledain, A. C., Madsen, B. W., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 835-840.]); Li et al. (2012[Li, G., Cai, X., Zheng, Z., Zhou, X. & Li, S. (2012). Acta Cryst. E68, o827.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27NO5

  • Mr = 445.50

  • Monoclinic, P 21

  • a = 7.8890 (16) Å

  • b = 8.6620 (17) Å

  • c = 16.629 (3) Å

  • β = 102.24 (3)°

  • V = 1110.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 EXPRESS; Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.973, Tmax = 0.991

  • 4421 measured reflections

  • 4083 independent reflections

  • 2611 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.180

  • S = 1.00

  • 4083 reflections

  • 301 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1886 Friedel pairs

  • Flack parameter: 0.04 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24A⋯O5i 0.93 2.54 3.453 (7) 168
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound C27H27NO5 is the benzoate ester of the opioid receptor antagonist naltrexone and is important as an intermediate for the preparation N-methylnaltrexone bromide. It is used for the treatment of a number of diseases which are related to abnormal release of endogenous opium (Beznischenko et al., 2007). The structures of a number of derivatives of naltrexone are known, e.g. naltrexone hydrochloride dihydrate (Ledain et al., 1992) and methylnaltrexone hydrobromide methanol monosolvate (Li et al., 2012). In the title compound, the known absolute configuration for the molecule was inferred from a previous naltrexone structure (Li et al., 2012).

In the crystal, a weak aromatic C—H···Ocarboxyl hydrogen bond involving the benzoate moieties of adjacent molecules (Table 1) gives a one-dimensional chain extending along the a axial direction. Present also in the structure is an intramolecular O2—H···N interaction.

Related literature top

For chemical properties of naltrexone, see: Fernando et al. (2008); Beznischenko et al. (2007). For related structures, see: Ledain et al. (1992); Li et al. (2012).

Experimental top

The title compound was prepared from 2.0 g (5.9 mmol) of naltrexone ([5α]-17-(cyclopropylmethyl-4,5-epoxy-3,14-dihydroxymorphinan-6-one)), 0.60 g of triethylamine and 16 ml of dichloromethane which were were successively introduced into a 100 ml reactor equipped with a condenser and a mechanical stirrer. After the solid had dissolved, benzoyl chloride (0.85 g, 6 mmol) was added over a 10 minute period at 20 °C and the reaction medium was refluxed for 2 h. The dichloromethane was removed under vacuum and the solid was recrystallized from ethanol, giving the pure title compound.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(methyl). The hydroxy H-atom was located in a difference Fourier and included in the subsequent refinement using restraints [O—H = 0.85 (1) Å, with Uiso(H) = 1.5Ueq(O)]. The absolute structure [(C4R,C5S,C6S,C7R) for the current trivial atom numbering scheme] was inferred from a previous structure determination (Li et al., 2012) [Flack structure parameter (Flack, 1983) for the present compound = 0.04 (2) for 1886 Friedel pairs].

Structure description top

The title compound C27H27NO5 is the benzoate ester of the opioid receptor antagonist naltrexone and is important as an intermediate for the preparation N-methylnaltrexone bromide. It is used for the treatment of a number of diseases which are related to abnormal release of endogenous opium (Beznischenko et al., 2007). The structures of a number of derivatives of naltrexone are known, e.g. naltrexone hydrochloride dihydrate (Ledain et al., 1992) and methylnaltrexone hydrobromide methanol monosolvate (Li et al., 2012). In the title compound, the known absolute configuration for the molecule was inferred from a previous naltrexone structure (Li et al., 2012).

In the crystal, a weak aromatic C—H···Ocarboxyl hydrogen bond involving the benzoate moieties of adjacent molecules (Table 1) gives a one-dimensional chain extending along the a axial direction. Present also in the structure is an intramolecular O2—H···N interaction.

For chemical properties of naltrexone, see: Fernando et al. (2008); Beznischenko et al. (2007). For related structures, see: Ledain et al. (1992); Li et al. (2012).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the title compound, with displacement parameters drawn at the 40% probability level.
17-Cyclopropylmethyl-14-hydroxy-6-oxo-4,5-epoxymorphinan-6-yl benzoate top
Crystal data top
C27H27NO5F(000) = 472
Mr = 445.50Dx = 1.332 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 7.8890 (16) Åθ = 9–12°
b = 8.6620 (17) ŵ = 0.09 mm1
c = 16.629 (3) ÅT = 293 K
β = 102.24 (3)°Block, colorless
V = 1110.5 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.4°, θmin = 1.3°
ω/2θ scansh = 09
Absorption correction: ψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
k = 1010
Tmin = 0.973, Tmax = 0.991l = 2019
4421 measured reflections3 standard reflections every 200 reflections
4083 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4083 reflectionsΔρmax = 0.23 e Å3
301 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1886 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
C27H27NO5V = 1110.5 (4) Å3
Mr = 445.50Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8890 (16) ŵ = 0.09 mm1
b = 8.6620 (17) ÅT = 293 K
c = 16.629 (3) Å0.30 × 0.20 × 0.10 mm
β = 102.24 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2611 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
Rint = 0.030
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
4421 measured reflections intensity decay: 1%
4083 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.23 e Å3
4083 reflectionsAbsolute structure: Flack (1983), 1886 Friedel pairs
301 parametersAbsolute structure parameter: 0.04 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.2654 (5)0.1880 (4)0.6679 (2)0.0435 (9)
O20.3797 (4)0.2516 (4)0.53015 (19)0.0510 (9)
H2A0.284 (7)0.255 (8)0.544 (4)0.076*
O10.9546 (5)0.4322 (5)0.5720 (2)0.0767 (12)
O30.8160 (4)0.5154 (3)0.7024 (2)0.0534 (9)
O41.0794 (4)0.4753 (4)0.8555 (2)0.0543 (9)
O50.9070 (5)0.6447 (5)0.8988 (3)0.0809 (13)
C10.6515 (6)0.1322 (5)0.5711 (3)0.0460 (12)
H1A0.60600.04600.53580.055*
H1B0.73640.09220.61730.055*
C20.7392 (7)0.2459 (6)0.5232 (3)0.0565 (13)
H2B0.83100.19300.50360.068*
H2C0.65500.28120.47540.068*
C30.8144 (7)0.3834 (6)0.5732 (3)0.0531 (13)
C40.7009 (6)0.4580 (6)0.6267 (3)0.0513 (12)
H4A0.63740.54510.59690.062*
C50.5727 (6)0.3498 (5)0.6553 (3)0.0432 (11)
C60.5069 (5)0.2075 (5)0.6020 (3)0.0376 (10)
C70.4182 (6)0.1033 (5)0.6559 (3)0.0419 (11)
H7A0.37530.01260.62260.050*
C80.5416 (6)0.0425 (5)0.7345 (3)0.0444 (11)
H8A0.47350.01510.77460.053*
H8B0.59750.05070.72080.053*
C90.6798 (6)0.1565 (5)0.7733 (3)0.0405 (10)
C100.6907 (5)0.2929 (5)0.7329 (3)0.0390 (10)
C110.8196 (6)0.3975 (5)0.7578 (3)0.0437 (11)
C120.9405 (6)0.3749 (6)0.8295 (3)0.0485 (12)
C130.9307 (6)0.2405 (6)0.8727 (3)0.0554 (13)
H13A1.01070.22280.92150.067*
C140.8052 (6)0.1324 (6)0.8448 (3)0.0506 (12)
H14A0.80380.04130.87430.061*
C150.4194 (6)0.4364 (5)0.6763 (3)0.0497 (12)
H15A0.46200.52050.71370.060*
H15B0.34950.48040.62650.060*
C160.3093 (6)0.3310 (5)0.7155 (3)0.0495 (12)
H16A0.37100.30530.77070.059*
H16B0.20320.38410.71970.059*
C170.1400 (6)0.0976 (5)0.7005 (3)0.0492 (12)
H17A0.04180.16310.70350.059*
H17B0.19290.06600.75610.059*
C180.0748 (6)0.0432 (5)0.6513 (3)0.0465 (11)
H18A0.04140.02910.59150.056*
C190.0330 (7)0.1532 (6)0.6878 (4)0.0650 (15)
H19A0.05130.13080.74250.078*
H19B0.13070.20150.65120.078*
C200.1424 (7)0.1989 (6)0.6801 (4)0.0617 (14)
H20A0.15240.27520.63860.074*
H20B0.23180.20440.73000.074*
C211.0464 (7)0.6142 (6)0.8869 (3)0.0485 (12)
C221.2002 (6)0.7137 (6)0.9061 (3)0.0442 (11)
C231.3556 (6)0.6722 (6)0.8883 (3)0.0517 (12)
H23A1.36660.57790.86320.062*
C241.4963 (7)0.7707 (7)0.9079 (3)0.0631 (15)
H24A1.60250.74170.89680.076*
C251.4796 (8)0.9124 (8)0.9439 (4)0.0750 (17)
H25A1.57300.98030.95550.090*
C261.3254 (8)0.9509 (8)0.9622 (4)0.0793 (18)
H26A1.31451.04440.98810.095*
C271.1857 (7)0.8539 (6)0.9430 (3)0.0604 (14)
H27B1.08020.88290.95490.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.043 (2)0.037 (2)0.050 (2)0.0027 (17)0.0110 (18)0.0051 (18)
O20.0522 (19)0.054 (2)0.0395 (17)0.0002 (18)0.0069 (16)0.0060 (15)
O10.066 (2)0.093 (3)0.073 (3)0.024 (2)0.020 (2)0.003 (2)
O30.061 (2)0.0400 (18)0.0533 (19)0.0179 (16)0.0021 (16)0.0009 (16)
O40.0430 (19)0.063 (2)0.055 (2)0.0057 (17)0.0040 (16)0.0182 (17)
O50.057 (2)0.081 (3)0.111 (3)0.012 (2)0.033 (2)0.040 (3)
C10.055 (3)0.044 (3)0.037 (2)0.007 (2)0.007 (2)0.002 (2)
C20.066 (3)0.064 (3)0.044 (3)0.006 (3)0.020 (2)0.003 (3)
C30.055 (3)0.058 (3)0.044 (3)0.004 (3)0.008 (2)0.021 (2)
C40.054 (3)0.045 (3)0.049 (3)0.012 (2)0.002 (2)0.010 (2)
C50.047 (3)0.033 (2)0.046 (3)0.003 (2)0.003 (2)0.003 (2)
C60.038 (2)0.036 (2)0.037 (2)0.0006 (19)0.0028 (19)0.0057 (19)
C70.045 (3)0.039 (2)0.041 (2)0.002 (2)0.008 (2)0.001 (2)
C80.050 (3)0.037 (2)0.047 (3)0.004 (2)0.011 (2)0.004 (2)
C90.043 (3)0.043 (3)0.034 (2)0.002 (2)0.007 (2)0.002 (2)
C100.042 (2)0.036 (2)0.038 (2)0.002 (2)0.005 (2)0.006 (2)
C110.052 (3)0.038 (3)0.041 (3)0.003 (2)0.010 (2)0.007 (2)
C120.037 (3)0.059 (3)0.044 (3)0.004 (2)0.002 (2)0.012 (2)
C130.052 (3)0.071 (4)0.038 (3)0.002 (3)0.001 (2)0.005 (3)
C140.050 (3)0.057 (3)0.042 (3)0.004 (3)0.004 (2)0.012 (2)
C150.055 (3)0.033 (2)0.057 (3)0.003 (2)0.002 (2)0.007 (2)
C160.051 (3)0.042 (3)0.055 (3)0.002 (2)0.009 (2)0.011 (2)
C170.046 (3)0.048 (3)0.057 (3)0.001 (2)0.017 (2)0.005 (2)
C180.053 (3)0.041 (3)0.045 (3)0.005 (2)0.010 (2)0.002 (2)
C190.066 (4)0.057 (3)0.074 (4)0.011 (3)0.018 (3)0.001 (3)
C200.077 (4)0.045 (3)0.065 (3)0.001 (3)0.019 (3)0.005 (2)
C210.044 (3)0.059 (3)0.043 (3)0.001 (2)0.011 (2)0.008 (2)
C220.037 (2)0.061 (3)0.034 (2)0.005 (2)0.0051 (19)0.001 (2)
C230.048 (3)0.061 (3)0.043 (3)0.001 (3)0.003 (2)0.003 (2)
C240.046 (3)0.090 (4)0.054 (3)0.001 (3)0.011 (2)0.006 (3)
C250.068 (4)0.085 (5)0.068 (4)0.026 (3)0.006 (3)0.003 (3)
C260.087 (4)0.072 (4)0.079 (4)0.023 (4)0.019 (4)0.029 (3)
C270.059 (3)0.059 (3)0.064 (3)0.007 (3)0.015 (3)0.014 (3)
Geometric parameters (Å, º) top
N—C171.453 (6)C11—C121.374 (6)
N—C71.460 (6)C12—C131.378 (7)
N—C161.471 (5)C13—C141.370 (7)
O2—C61.440 (5)C13—H13A0.9300
O2—H2A0.84 (5)C14—H14A0.9300
O1—C31.188 (6)C15—C161.501 (7)
O3—C111.372 (5)C15—H15A0.9700
O3—C41.473 (6)C15—H15B0.9700
O4—C211.358 (6)C16—H16A0.9700
O4—C121.394 (5)C16—H16B0.9700
O5—C211.187 (6)C17—C181.498 (7)
C1—C61.496 (6)C17—H17A0.9700
C1—C21.522 (6)C17—H17B0.9700
C1—H1A0.9700C18—C191.490 (7)
C1—H1B0.9700C18—C201.491 (7)
C2—C31.501 (7)C18—H18A0.9800
C2—H2B0.9700C19—C201.471 (7)
C2—H2C0.9700C19—H19A0.9700
C3—C41.534 (7)C19—H19B0.9700
C4—C51.527 (6)C20—H20A0.9700
C4—H4A0.9800C20—H20B0.9700
C5—C101.505 (6)C21—C221.467 (6)
C5—C151.526 (6)C22—C231.369 (6)
C5—C61.542 (6)C22—C271.376 (7)
C6—C71.541 (6)C23—C241.383 (7)
C7—C81.547 (6)C23—H23A0.9300
C7—H7A0.9800C24—C251.384 (9)
C8—C91.510 (6)C24—H24A0.9300
C8—H8A0.9700C25—C261.357 (8)
C8—H8B0.9700C25—H25A0.9300
C9—C101.371 (6)C26—C271.369 (8)
C9—C141.393 (6)C26—H26A0.9300
C10—C111.359 (6)C27—H27B0.9300
C17—N—C7115.3 (4)C14—C13—C12121.2 (4)
C17—N—C16110.7 (3)C14—C13—H13A119.4
C7—N—C16112.9 (3)C12—C13—H13A119.4
C6—O2—H2A107 (4)C13—C14—C9121.2 (5)
C11—O3—C4104.1 (3)C13—C14—H14A119.4
C21—O4—C12118.0 (4)C9—C14—H14A119.4
C6—C1—C2111.2 (4)C16—C15—C5111.1 (4)
C6—C1—H1A109.4C16—C15—H15A109.4
C2—C1—H1A109.4C5—C15—H15A109.4
C6—C1—H1B109.4C16—C15—H15B109.4
C2—C1—H1B109.4C5—C15—H15B109.4
H1A—C1—H1B108.0H15A—C15—H15B108.0
C3—C2—C1113.2 (4)N—C16—C15111.7 (4)
C3—C2—H2B108.9N—C16—H16A109.3
C1—C2—H2B108.9C15—C16—H16A109.3
C3—C2—H2C108.9N—C16—H16B109.3
C1—C2—H2C108.9C15—C16—H16B109.3
H2B—C2—H2C107.8H16A—C16—H16B107.9
O1—C3—C2122.3 (5)N—C17—C18114.7 (4)
O1—C3—C4121.3 (5)N—C17—H17A108.6
C2—C3—C4116.4 (4)C18—C17—H17A108.6
O3—C4—C5105.7 (4)N—C17—H17B108.6
O3—C4—C3107.9 (4)C18—C17—H17B108.6
C5—C4—C3115.4 (4)H17A—C17—H17B107.6
O3—C4—H4A109.2C19—C18—C2059.1 (3)
C5—C4—H4A109.2C19—C18—C17117.3 (4)
C3—C4—H4A109.2C20—C18—C17120.2 (4)
C10—C5—C15109.9 (4)C19—C18—H18A116.1
C10—C5—C497.9 (3)C20—C18—H18A116.1
C15—C5—C4112.2 (4)C17—C18—H18A116.1
C10—C5—C6107.6 (3)C20—C19—C1860.5 (3)
C15—C5—C6109.8 (4)C20—C19—H19A117.7
C4—C5—C6118.5 (4)C18—C19—H19A117.7
O2—C6—C1106.2 (3)C20—C19—H19B117.7
O2—C6—C7108.4 (3)C18—C19—H19B117.7
C1—C6—C7114.7 (3)H19A—C19—H19B114.8
O2—C6—C5110.8 (3)C19—C20—C1860.4 (3)
C1—C6—C5110.9 (4)C19—C20—H20A117.7
C7—C6—C5105.9 (3)C18—C20—H20A117.7
N—C7—C6106.0 (3)C19—C20—H20B117.7
N—C7—C8116.5 (4)C18—C20—H20B117.7
C6—C7—C8114.1 (3)H20A—C20—H20B114.9
N—C7—H7A106.6O5—C21—O4121.4 (5)
C6—C7—H7A106.6O5—C21—C22125.8 (5)
C8—C7—H7A106.6O4—C21—C22112.7 (4)
C9—C8—C7114.0 (4)C23—C22—C27119.4 (5)
C9—C8—H8A108.8C23—C22—C21122.4 (5)
C7—C8—H8A108.8C27—C22—C21118.2 (4)
C9—C8—H8B108.8C22—C23—C24119.9 (5)
C7—C8—H8B108.8C22—C23—H23A120.1
H8A—C8—H8B107.7C24—C23—H23A120.1
C10—C9—C14116.2 (4)C23—C24—C25120.2 (5)
C10—C9—C8118.0 (4)C23—C24—H24A119.9
C14—C9—C8125.8 (4)C25—C24—H24A119.9
C11—C10—C9123.0 (4)C26—C25—C24119.1 (6)
C11—C10—C5109.3 (4)C26—C25—H25A120.4
C9—C10—C5127.6 (4)C24—C25—H25A120.4
C10—C11—O3112.5 (4)C25—C26—C27120.8 (6)
C10—C11—C12120.5 (4)C25—C26—H26A119.6
O3—C11—C12126.9 (4)C27—C26—H26A119.6
C11—C12—C13117.8 (4)C26—C27—C22120.4 (5)
C11—C12—O4122.4 (4)C26—C27—H27B119.8
C13—C12—O4119.5 (4)C22—C27—H27B119.8
C6—C1—C2—C359.3 (6)C6—C5—C10—C11146.1 (4)
C1—C2—C3—O1135.8 (5)C15—C5—C10—C987.6 (5)
C1—C2—C3—C444.0 (6)C4—C5—C10—C9155.2 (5)
C11—O3—C4—C529.6 (5)C6—C5—C10—C931.9 (6)
C11—O3—C4—C394.4 (4)C9—C10—C11—O3172.3 (4)
O1—C3—C4—O334.1 (6)C5—C10—C11—O35.9 (5)
C2—C3—C4—O3145.7 (4)C9—C10—C11—C124.6 (7)
O1—C3—C4—C5152.0 (5)C5—C10—C11—C12177.3 (4)
C2—C3—C4—C527.8 (6)C4—O3—C11—C1015.1 (5)
O3—C4—C5—C1031.1 (4)C4—O3—C11—C12161.6 (5)
C3—C4—C5—C1088.0 (4)C10—C11—C12—C132.8 (7)
O3—C4—C5—C1584.3 (4)O3—C11—C12—C13173.6 (4)
C3—C4—C5—C15156.6 (4)C10—C11—C12—O4177.0 (4)
O3—C4—C5—C6146.1 (4)O3—C11—C12—O40.6 (7)
C3—C4—C5—C627.0 (6)C21—O4—C12—C1174.5 (6)
C2—C1—C6—O264.0 (5)C21—O4—C12—C13111.5 (5)
C2—C1—C6—C7176.4 (4)C11—C12—C13—C140.3 (7)
C2—C1—C6—C556.5 (5)O4—C12—C13—C14174.0 (4)
C10—C5—C6—O2174.4 (3)C12—C13—C14—C92.0 (8)
C15—C5—C6—O254.8 (5)C10—C9—C14—C130.4 (7)
C4—C5—C6—O275.9 (5)C8—C9—C14—C13176.6 (5)
C10—C5—C6—C168.0 (4)C10—C5—C15—C1664.0 (5)
C15—C5—C6—C1172.4 (4)C4—C5—C15—C16171.9 (4)
C4—C5—C6—C141.7 (5)C6—C5—C15—C1654.2 (5)
C10—C5—C6—C757.1 (4)C17—N—C16—C15172.2 (4)
C15—C5—C6—C762.5 (4)C7—N—C16—C1556.8 (5)
C4—C5—C6—C7166.7 (4)C5—C15—C16—N49.4 (5)
C17—N—C7—C6166.1 (4)C7—N—C17—C1855.6 (5)
C16—N—C7—C665.2 (4)C16—N—C17—C18174.6 (4)
C17—N—C7—C865.8 (5)N—C17—C18—C19171.0 (4)
C16—N—C7—C862.9 (5)N—C17—C18—C20102.6 (5)
O2—C6—C7—N52.4 (4)C17—C18—C19—C20110.6 (5)
C1—C6—C7—N170.8 (4)C17—C18—C20—C19105.6 (5)
C5—C6—C7—N66.5 (4)C12—O4—C21—O56.6 (7)
O2—C6—C7—C8178.1 (4)C12—O4—C21—C22175.6 (4)
C1—C6—C7—C859.7 (5)O5—C21—C22—C23178.1 (5)
C5—C6—C7—C862.9 (4)O4—C21—C22—C234.3 (6)
N—C7—C8—C988.2 (5)O5—C21—C22—C271.6 (8)
C6—C7—C8—C935.8 (5)O4—C21—C22—C27176.1 (4)
C7—C8—C9—C105.0 (6)C27—C22—C23—C240.3 (7)
C7—C8—C9—C14178.9 (4)C21—C22—C23—C24180.0 (4)
C14—C9—C10—C112.9 (7)C22—C23—C24—C251.2 (7)
C8—C9—C10—C11173.6 (4)C23—C24—C25—C262.1 (8)
C14—C9—C10—C5179.3 (4)C24—C25—C26—C272.1 (10)
C8—C9—C10—C54.2 (7)C25—C26—C27—C221.3 (9)
C15—C5—C10—C1194.4 (4)C23—C22—C27—C260.3 (8)
C4—C5—C10—C1122.8 (5)C21—C22—C27—C26180.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N0.84 (6)2.18 (7)2.691 (5)120 (5)
C24—H24A···O5i0.932.543.453 (7)168
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC27H27NO5
Mr445.50
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.8890 (16), 8.6620 (17), 16.629 (3)
β (°) 102.24 (3)
V3)1110.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4421, 4083, 2611
Rint0.030
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.180, 1.00
No. of reflections4083
No. of parameters301
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23
Absolute structureFlack (1983), 1886 Friedel pairs
Absolute structure parameter0.04 (2)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···O5i0.932.543.453 (7)168
Symmetry code: (i) x+1, y, z.
 

References

First citationBeznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325–1329.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFernando, S.-D., Fernando, L., Francesc, L., Miguel, J. & Catalina, R.-P. (2008). Cryst. Growth Des. 8, 3219–3232.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLedain, A. C., Madsen, B. W., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 835–840.  CSD CrossRef Google Scholar
First citationLi, G., Cai, X., Zheng, Z., Zhou, X. & Li, S. (2012). Acta Cryst. E68, o827.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds