organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[(E)-2-Phenyl­vin­yl]-1H-indole

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: peluoyh@sina.com

(Received 7 November 2011; accepted 1 December 2011; online 10 December 2011)

The title compound, C16H13N, is essentially planar [maximum deviation from the least-squares plane = 0.081 (3) Å], with a dihedral angle of 1.65 (13)° between the planes of the indole and benzene rings. In the crystal, there are no significant inter­molecular ππ inter­actions [minimum ring centroid–centroid separation = 4.217 (5) Å].

Related literature

For background information on indole derivatives as drug inter­mediates, see: Kunzer & Wendt (2011[Kunzer, A. R. & Wendt, M. D. (2011). Tetrahedron, 52, 1815-1818.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N

  • Mr = 219.29

  • Orthorhombic, P n a 21

  • a = 8.254 (8) Å

  • b = 5.626 (6) Å

  • c = 25.74 (3) Å

  • V = 1195 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku SCXmini CCD-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.993

  • 7653 measured reflections

  • 1954 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.08

  • 1954 reflections

  • 154 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The derivatives of indole are important chemical materials, because they are excellent drug intermediates for many pharmaceutical products (Kunzer & Wendt, 2011). As part of our interest in these materials, we report here the crystal structure of the title compound C16H13N (Fig. 1).

This compound is essentially planar [maximum deviation from the least-squares plane 0.081 (3) Å (for C1)], with a dihedral angle of 1.65 (13)° between the planes of the indole and benzene ring systems. With the absence of no acceptor atoms in the molecule, no intermolecular hydrogen bonds are found in the crystal packing. Also, there are no significant intermolecular ππ interactions [minimum ring centroid separation, 4.217 (5) Å].

Related literature top

For background information on indole derivatives as drug intermediates, see: Kunzer & Wendt (2011).

Experimental top

Crystals of 6-phenylvinylindole suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms attached to C atoms and the N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing in the unit cell viewed down the a axis.
6-[(E)-2-Phenylvinyl]-1H-indole top
Crystal data top
C16H13NF(000) = 464
Mr = 219.29Dx = 1.218 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1954 reflections
a = 8.254 (8) Åθ = 3.2–25.0°
b = 5.626 (6) ŵ = 0.07 mm1
c = 25.74 (3) ÅT = 296 K
V = 1195 (2) Å3Prism, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Rigaku SCXmini CCD-detector
diffractometer
1954 independent reflections
Radiation source: fine-focus sealed tube1627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 3.2°
CCD profile–fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.982, Tmax = 0.993l = 2730
7653 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.2586P]
where P = (Fo2 + 2Fc2)/3
1954 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.27 e Å3
19 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H13NV = 1195 (2) Å3
Mr = 219.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.254 (8) ŵ = 0.07 mm1
b = 5.626 (6) ÅT = 296 K
c = 25.74 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Rigaku SCXmini CCD-detector
diffractometer
1954 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1627 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.993Rint = 0.022
7653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04619 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
1954 reflectionsΔρmin = 0.21 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.0689 (4)0.5222 (6)0.31498 (14)0.0656 (8)
H2A0.05880.62420.28670.079*
C80.0968 (4)0.4941 (5)0.46948 (12)0.0597 (6)
C70.1442 (3)0.6940 (5)0.43984 (13)0.0623 (8)
H7A0.21020.80760.45530.075*
C150.4035 (4)0.4885 (6)0.70717 (14)0.0687 (9)
H15A0.43590.47640.74170.082*
C50.0018 (3)0.3276 (5)0.44626 (11)0.0538 (7)
H5A0.03690.19550.46480.065*
C30.0004 (3)0.5547 (5)0.36510 (11)0.0510 (6)
N10.1423 (3)0.2156 (4)0.36424 (10)0.0594 (6)
H1A0.18750.08500.37380.071*
C60.0972 (3)0.7280 (5)0.38924 (13)0.0613 (8)
H6A0.12890.86350.37120.074*
C100.2538 (4)0.5725 (6)0.55023 (12)0.0658 (5)
H10A0.30120.70040.53310.079*
C40.0482 (3)0.3585 (4)0.39512 (11)0.0471 (6)
C90.1498 (4)0.4487 (6)0.52418 (13)0.0636 (5)
H9A0.10360.31910.54100.076*
C120.4050 (4)0.6954 (6)0.62754 (15)0.0720 (9)
H12A0.44030.82450.60800.086*
C130.2544 (4)0.3359 (6)0.63444 (13)0.0709 (9)
H13A0.18800.21990.62000.085*
C110.3047 (4)0.5306 (6)0.60460 (13)0.0640 (6)
C140.3045 (4)0.3175 (6)0.68583 (14)0.0716 (9)
H14A0.27100.18910.70590.086*
C160.4541 (4)0.6758 (7)0.67764 (14)0.0745 (9)
H16A0.52230.79010.69190.089*
C10.1528 (4)0.3136 (6)0.31610 (14)0.0672 (8)
H1B0.20870.24830.28820.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0589 (17)0.074 (2)0.0634 (19)0.0063 (16)0.0072 (14)0.0118 (17)
C80.0534 (11)0.0637 (12)0.0620 (12)0.0073 (10)0.0089 (9)0.0038 (11)
C70.0517 (15)0.0564 (17)0.079 (2)0.0009 (13)0.0019 (15)0.0132 (16)
C150.0648 (19)0.078 (2)0.063 (2)0.0144 (17)0.0019 (16)0.0018 (18)
C50.0495 (14)0.0506 (14)0.0612 (19)0.0012 (12)0.0077 (13)0.0047 (14)
C30.0395 (12)0.0517 (14)0.0618 (17)0.0039 (11)0.0095 (13)0.0058 (13)
N10.0490 (12)0.0554 (13)0.0739 (18)0.0070 (10)0.0006 (12)0.0002 (13)
C60.0507 (14)0.0428 (13)0.090 (2)0.0006 (12)0.0138 (16)0.0090 (16)
C100.0604 (10)0.0708 (11)0.0661 (10)0.0047 (9)0.0093 (8)0.0033 (9)
C40.0389 (12)0.0474 (13)0.0550 (16)0.0029 (10)0.0045 (12)0.0009 (12)
C90.0579 (9)0.0675 (11)0.0654 (10)0.0049 (9)0.0093 (8)0.0047 (9)
C120.0658 (19)0.074 (2)0.077 (2)0.0057 (16)0.0101 (18)0.0082 (19)
C130.0671 (19)0.071 (2)0.074 (2)0.0016 (16)0.0065 (18)0.0103 (18)
C110.0590 (11)0.0707 (12)0.0624 (12)0.0082 (11)0.0107 (10)0.0022 (11)
C140.073 (2)0.070 (2)0.072 (2)0.0003 (16)0.0026 (17)0.0096 (17)
C160.067 (2)0.078 (2)0.078 (3)0.0089 (17)0.0027 (18)0.0035 (19)
C10.0569 (17)0.082 (2)0.0630 (19)0.0074 (16)0.0034 (15)0.0041 (18)
Geometric parameters (Å, º) top
C2—C11.363 (5)N1—C41.372 (4)
C2—C31.423 (5)N1—H1A0.8600
C2—H2A0.9300C6—H6A0.9300
C8—C51.377 (4)C10—C91.293 (4)
C8—C71.415 (4)C10—C111.480 (5)
C8—C91.497 (5)C10—H10A0.9300
C7—C61.372 (5)C9—H9A0.9300
C7—H7A0.9300C12—C161.356 (5)
C15—C161.365 (5)C12—C111.376 (5)
C15—C141.377 (5)C12—H12A0.9300
C15—H15A0.9300C13—C141.390 (5)
C5—C41.382 (4)C13—C111.401 (4)
C5—H5A0.9300C13—H13A0.9300
C3—C41.406 (4)C14—H14A0.9300
C3—C61.405 (4)C16—H16A0.9300
N1—C11.359 (4)C1—H1B0.9300
C1—C2—C3107.2 (3)C11—C10—H10A116.8
C1—C2—H2A126.4N1—C4—C5129.5 (2)
C3—C2—H2A126.4N1—C4—C3107.7 (3)
C5—C8—C7118.0 (3)C5—C4—C3122.9 (3)
C5—C8—C9117.7 (3)C10—C9—C8126.2 (3)
C7—C8—C9124.2 (3)C10—C9—H9A116.9
C6—C7—C8123.0 (3)C8—C9—H9A116.9
C6—C7—H7A118.5C16—C12—C11122.2 (3)
C8—C7—H7A118.5C16—C12—H12A118.9
C16—C15—C14119.9 (3)C11—C12—H12A118.9
C16—C15—H15A120.0C14—C13—C11119.5 (3)
C14—C15—H15A120.0C14—C13—H13A120.3
C8—C5—C4119.5 (3)C11—C13—H13A120.3
C8—C5—H5A120.3C12—C11—C13118.0 (3)
C4—C5—H5A120.3C12—C11—C10118.0 (3)
C4—C3—C6117.7 (3)C13—C11—C10124.0 (3)
C4—C3—C2106.4 (3)C15—C14—C13120.3 (3)
C6—C3—C2135.9 (3)C15—C14—H14A119.9
C1—N1—C4109.1 (2)C13—C14—H14A119.9
C1—N1—H1A125.5C12—C16—C15120.1 (3)
C4—N1—H1A125.5C12—C16—H16A120.0
C7—C6—C3118.9 (3)C15—C16—H16A120.0
C7—C6—H6A120.5N1—C1—C2109.7 (3)
C3—C6—H6A120.5N1—C1—H1B125.2
C9—C10—C11126.4 (3)C2—C1—H1B125.2
C9—C10—H10A116.8

Experimental details

Crystal data
Chemical formulaC16H13N
Mr219.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)8.254 (8), 5.626 (6), 25.74 (3)
V3)1195 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku SCXmini CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.982, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7653, 1954, 1627
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.08
No. of reflections1954
No. of parameters154
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKunzer, A. R. & Wendt, M. D. (2011). Tetrahedron, 52, 1815–1818.  CrossRef CAS Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds