research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di-μ-chlorido-bis­­[(aceto­nitrile-κN)chlorido­(ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate-κ2N2,O)copper(II)]

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd, Oleksandra Matrosova Str. 23, Kyiv 01103, Ukraine, and c"Poni Petru" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: igolenya@ua.fm

Edited by O. Blacque, University of Zürich, Switzerland (Received 7 October 2021; accepted 14 October 2021; online 26 October 2021)

The title compound, [Cu2Cl4(C5H10N2O2)2(CH3CN)2] or [Cu2(μ2-Cl)2(CH3—Pz-COOCH2CH3)2Cl2(CH3CN)2], was synthesized using a one-pot reaction of copper powder, copper(II) chloride dihydrate and ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate (CH3—Pz-COOCH2CH3) in aceto­nitrile under ambient conditions. This complex consists of discrete binuclear mol­ecules with a {Cu2(μ2-Cl)2} core, in which the Cu⋯Cu distance is 3.8002 (7) Å. The pyrazole-based ligands are bidentate coordinated, leading to the formation of two five-membered chelate rings. The coordination geometry of both copper atoms (ON2Cl3) can be described as distorted octa­hedral on account of the aceto­nitrile coordination. A Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯H (40%), H⋯Cl/Cl⋯H (24.3%), H⋯O/O⋯H (11.8%), H⋯C/C⋯H (9.2%) and H⋯N/N⋯H (8.3%) inter­actions.

1. Chemical context

Pyrazoles can form structures of various nuclearities, ranging from mononuclear (Mighell et al., 1975[Mighell, A., Santoro, A., Prince, E. & Reimann, C. (1975). Acta Cryst. B31, 2479-2482.]; Liu et al., 2001[Liu, X.-M., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2001). Acta Cryst. C57, 1253-1255.]; Małecka et al., 2003[Małecka, M. & Chęcińska, L. (2003). Acta Cryst. C59, m115-m117.]) to polynuclear complexes (He, 2011[He, H. (2011). Acta Cryst. E67, m140.]; Contaldi et al., 2009[Contaldi, S., Di Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 4928-4941.]; Chandrasekhar et al., 2008[Chandrasekhar, V., Nagarajan, L., Clérac, R., Ghosh, S., Senapati, T. & Verma, S. (2008). Inorg. Chem. 47, 5347-5354.]) and metallacycles (Vynohradov et al., 2020a[Vynohradov, O. S., Pavlenko, V. A., Fritsky, I. O., Gural'skiy, I. A. & Shova, S. (2020a). Russ. J. Inorg. Chem. 65, 1481-1488.]; Surmann et al., 2016[Surmann, S. A. & Mezei, G. (2016). Acta Cryst. E72, 1517-1520.]; Galassi et al., 2012[Galassi, R., Burini, A. & Mohamed, A. A. (2012). Eur. J. Inorg. Chem. 2012, 3257-3261.]) with specific mol­ecular topologies. By performing the synthesis of metal complexes by oxidative dissolution of metals, commonly known as direct synthesis (Kokozay et al., 2018[Kokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183-237. Amsterdam: Elsevier.]; Plyuta et al., 2020[Plyuta, N., Vassilyeva, O. Yu., Kokozay, V. N., Omelchenko, I. & Petrusenko, S. (2020). Acta Cryst. E76, 423-426.]; Sirenko et al., 2020[Sirenko, V. Y., Kucheriv, O. I., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2020). Eur. J. Inorg. Chem. pp. 4523-4531.]; Li et al., 2021[Li, X. & Binnemans, K. (2021). Chem. Rev. 121, 4506-4530.]), copper can be introduced in a zerovalent state. Copper powder can be oxidized in solution in the presence of proton-donating agents, such as pyrazoles, to form polynuclear complexes, where two copper atoms are connected by a bidentate-bridging deprotonated pyrazole (Vynohradov et al., 2020b[Vynohradov, O. S., Pavlenko, V. A., Naumova, D. D., Partsevska, S. V., Shova, S. & Safarmamadov, S. M. (2020b). Acta Cryst. E76, 1641-1644.]; Davydenko et al., 2013[Davydenko, Y. M., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2013). Z. Anorg. Allg. Chem. 639, 1472-1476.]). Many examples of copper coordination compounds have been synthesized and described in which two copper atoms are connected by halogen bridges, for example, through chlorine anions, deprotonated ligand mol­ecules and also hydroxyl groups (Vincent et al., 2018[Vincent, C. J., Giles, I. D. & Deschamps, J. R. (2018). Acta Cryst. E74, 357-362.]; Wei et al., 2012[Wei, W. & Xu, Y. (2012). Acta Cryst. E68, m557.]; Mezei et al., 2004[Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279-3288.]). Copper(II) pyrazolate complexes have attracted considerable inter­est for their inter­esting magnetic properties (Malinkin et al., 2012[Malinkin, S. O., Moroz, Y. S., Penkova, L. V., Bon, V. V., Gumienna-Kontecka, E., Pavlenko, V. A., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012). Polyhedron, 37, 77-84.]; Spodine et al., 1999[Spodine, E., Atria, A. M., Valenzuela, J., Jalocha, J., Manzur, J., García, A. M., Garland, M. T., Peña, O. & Saillard, J.-Y. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3029-3034.]) and abilities to bind DNA (Vafaza­deh et al., 2015[Vafazadeh, R. C., Willis, A., Mehdi Heidari, M. & Hasanzade, N. (2015). Acta Chim. Slov. 2015, 62, 122-129.]; Kulkarni et al., 2011[Kulkarni, N. V., Kamath, A., Budagumpi, S. & Revankar, V. K. (2011). J. Mol. Struct. 1006, 580-588.]). Finally, the anti­oxidant (Kupcewicz et al., 2013[Kupcewicz, B., Sobiesiak, K., Malinowska, K., Koprowska, K., Czyz, M., Keppler, B. & Budzisz, E. (2013). Med. Chem. Res. 22, 2395-2402.]) and anti­cancer (Santini et al., 2014[Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815-862.]) activities of these compounds should be noted. Relatively few unsymmetrical pyrazole-containing ligands with different chelating arms in the 3- and 5-positions and their coordination compounds have been investigated so far (Konrad et al., 2001[Konrad, M., Wuthe, S., Meyer, F. & Kaifer, E. (2001). Eur. J. Inorg. Chem. pp. 2233-2240.]; Dubs et al., 2006[Dubs, C., Yamamoto, T., Inagaki, A. & Akita, M. (2006). Organometallics, 25, 1344-1358.]; Krämer et al., 2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314..]; Röder et al., 2002[Röder, J. C., Meyer, F., Winter, R. F. & Kaifer, E. (2002). J. Organomet. Chem. 641, 113-120.]; Penkova et al., 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]). Considering the above, we understand the importance of accumulating a theoretical information base on such coordination compounds, and therefore in this article we report the synthesis, crystal structure and Hirshfeld surface analysis of a new binuclear copper(II) complex with unsymmetrical pyrazole ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate – [Cu2(μ2-Cl)2(CH3-Pz-COOCH2CH3)2Cl2(CH3CN)2].

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is a binuclear cyclic copper(II) pyrazole-containing complex which crystallized in the monoclinic P21/c space group. The asymmetric unit consists of one copper ion, one ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate ligand, one coord­inated aceto­nitrile mol­ecule and two chlorine ions. One of these chlorine ions bridges two metal centers, thus connecting two symmetry-generated fragments. The structure of this complex can be described as a dimer of formula [CuCl2(C7H10N2O2)(CH3CN)]2 in which the CH3-Pz-COOCH2CH3 ligand is coordinated in a bidentate way and remains protonated. The copper atom has a distorted octa­hedral coordination environment formed by three chlorine atoms, one nitro­gen atom of the aceto­nitrile mol­ecule and two atoms of the unsymmetrical pyrazole ligand – the pyridine-like N1 atom and atom O 1 of the ester substituent in position 3 of the pyrazole ring. The bidentate coordination of the pyrazole ligand leads to the formation of a five-membered chelate ring. The atoms in the ring deviate only slightly from planarity [the Cu1 atom is out of the Cu1/N1/C4/C5/O1 plane by 0.0222 (8) Å; N1 by −0.0406 (14) Å; C4 by 0.0326 (15) Å; C5 by 0.0031 (18) Å and O1 by −0.0172 (14) Å]. Both the copper atoms and the bridging chlorine atoms lie in the same plane without deviations from planarity. The inter­metallic distance in the dimer unit is 3.8002 (7) Å while the chlorine–chlorine separation in the four-membered bimetallic cycle is 3.5894 (15) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Irrelevant hydrogen atoms were omitted for clarity.

An overlay of the asymmetric units of the structures of the title compound (red) and a similar complex with methyl 5-methyl-1H-pyrazole-3-carboxyl­ate (green) is presented in Fig. 2[link]. The structures were compared using OLEX2 software (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). It was found that the structure of the complex does not change regardless of the organic radical R in the COOR ester group, whether –CH3 or –CH2—CH3. The crystal structures of these compounds are also similar. In addition, the inter­metallic distance in the above structures differs approximately by 0.1 Å and the chlorine–chlorine separation in the four-membered bimetallic ring differs by 0.05 Å [Cu⋯Cu = 3.7047 (7) Å and Cl⋯Cl = 3.5364 (11) Å for the methyl analogue]. The mol­ecular structure is stabilized by intra­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.80 (2) 2.72 (2) 3.281 (2) 129 (2)
N2—H2⋯Cl2i 0.80 (2) 2.59 (2) 3.273 (2) 145 (1)
C7—H7A⋯Cl2ii 0.96 2.79 3.662 (4) 151
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Overlay diagram of the asymmetric units of the structures of the title compound (red) and of a similar complex with methyl 5-methyl-1H-pyrazole-3-carboxyl­ate (green) which shows the similarity of the structure regardless of the organic radical R in the COOR ester group of the substituent on the pyrazole ring.

3. Supra­molecular features

The crystal packing of the title compound (Fig. 3[link]) consists of discrete binuclear mol­ecules with a {Cu2(μ2-Cl)2} core, which form a planar bimetallic ring. The four-membered Cu1/Cl1/Cu1i/Cl1i planes of the bimetallic rings are situated perpendicular to the b axis, while the chelate ring planes are located approximately parallel. No inter­molecular hydrogen bonds were identified in the crystal structure. The minimum separation between the Cl atoms of neighbouring mol­ecules inside one unit cell is 4.4013 (13) Å for Cl1i and Cl1ii [symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) x, y, −1 + z] while the minimum distance between two copper atoms is 7.6498 (3) Å for Cu1 and Cu1ii.

[Figure 3]
Figure 3
Crystal packing of the title compound viewed along (a) the a- and (b) the b-axis directions. Selected hydrogen atoms were omitted for clarity.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were performed using Crystal Explorer 17.5 (Turner et al., 2018[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1996 (red) to 1.1926 (blue) a.u. The pale-red spots in Fig. 4[link] represent short contacts and negative dnorm values on the surface corresponding to the inter­actions described above. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts, the overall two-dimensional fingerprint plot and the decomposed two-dimensional fingerprint plots are given in Fig. 5[link]. Twelve short inter­atomic contacts in the range 2.34–2.8 Å are indicated by the faint red spots. Two pairs of inter­molecular C—H⋯O contacts between the O1 atom of the ester substituent and the hydrogen atom of the methyl group of the coordinated aceto­nitrile were the shortest. Also, four inter­molecular C—H⋯Cl contacts with a length of 2.685 Å, which are present between the terminal chlorine atoms and the hydrogen atoms of the ethyl group (hydrogen atom near C7) of the ester substituent are also short. Finally, four inter­molecular C—H⋯Cl contacts with a length of 2.8 Å are observed between the terminal chlorine atoms and the hydrogen atoms of the –CH3 group of the aceto­nitrile mol­ecule. For the title compound, the most significant contributions to the overall crystal packing are from H⋯H (40%), H⋯Cl/Cl⋯H (24.3%), H⋯O/O⋯H (11.8%), H⋯C/C⋯H (9.2%) and H⋯N/N⋯H (8.3%) contacts. The small contribution of the other weak inter­molecular C⋯C (2.9%), C⋯O/O⋯C (2.1%), C⋯N/N⋯C (0.8%), C⋯Cl/Cl⋯C (0.3%), O⋯N/N⋯O (0.3%) and Cl⋯Cl (0.1%) contacts has a negligible effect on the packing. In addition, qu­anti­tative physical properties of the Hirshfeld surface for the title compound were obtained, such as mol­ecular volume (657.89 Å3), surface area (571.56 Å2), globularity (0.640), as well as asphericity (0.147).

[Figure 4]
Figure 4
Two projections of Hirshfeld surfaces mapped over dnorm showing the inter­molecular inter­actions within the mol­ecule.
[Figure 5]
Figure 5
The overall two-dimensional fingerprint plot and those delineated into specified inter­actions. Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

5. Database survey

Six similar structures are registered in the Cambridge Structural Database (Version 2021.1; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): two reports of complexes with methyl 5-methyl-1H-pyrazole-3-carboxyl­ate [UMUXEI (Rheingold, 2021[Rheingold, A. L. (2021). CSD Communication (CCDC 869805). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.ccy637g.]) and ZEQGUZ (Shakirova et al., 2012[Shakirova, O. G., Lavrenova, L. G., Kuratieva, N. V., Naumov, D. Y., Bogomyakov, A. S., Sheludyakova, L. A., Mikhailovskaya, T. F. & Vasilevsky, S. F. (2012). Russ. J. Coord. Chem. 38, 552-559.])], two reports of the free ligand ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate [FAQSAR01 (Mague et al., 2018[Mague, J. & Ramli, Y. (2018). CSD Communication (CCDC 1872098). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc20v287]) and FAQSAR02 (Kusakiewicz-Dawid et al., 2019[Kusakiewicz-Dawid, A., Porada, M., Dziuk, B. & Siodłak, D. (2019). Molecules, 24, 2632.])] and two structure reports of the same ligand with a different name and cell parameters (Elguero et al., 1999[Elguero, J., Infantes, L., Foces-Foces, C. M., Claramunt, R., López, C. & Jagerovic, N. (1999). Heterocycles, 50, 227-242.]) [3-eth­oxy­carbonyl-5-methyl­pyrazole (FAQSAR) and 4-bromo-3-eth­oxy­carbonyl-5-methyl­pyrazole (FAQTAS)].

6. Synthesis and crystallization

[Cu2(μ2-Cl)2(CH3-Pz-COOCH2CH3)2Cl2(CH3CN)2] was synthesized at room temperature by the oxidative dissolution method by the addition of a copper powder (1.56 mmol, 0.1 g) and copper(II) chloride dihydrate (3.1 mmol, 0.53 g) mixture to an aceto­nitrile (9 ml) solution of ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate (4.67 mmol, 0.72 g). The mixture was stirred without heating for three h with free air access until dissolution of the copper powder and a green precipitate of the product was obtained. The precipitate was filtered off and re-dissolved in aceto­nitrile. Green crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent. The IR spectra of the starting pyrazole ligand and the obtained green crystals of the title coordination compound are given in the supporting information.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically (C—H = 0.93–0.97) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). N-bound H atoms were refined with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula [Cu2Cl4(C5H10N2O2)2(C2H3N)2]
Mr 659.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.3934 (4), 15.9822 (5), 7.6498 (3)
β (°) 106.226 (4)
V3) 1337.48 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.03
Crystal size (mm) 0.45 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO.Rigaku Inc., Tokyo, Japan.])
Tmin, Tmax 0.839, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9132, 3062, 2380
Rint 0.029
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.04
No. of reflections 3062
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO.Rigaku Inc., Tokyo, Japan.]), SHELXLT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXLT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-chlorido-bis[(acetonitrile-κN)chlorido(ethyl 5-methyl-1H-pyrazole-3-carboxylate-κ2N2,O)copper(II)] top
Crystal data top
[Cu2Cl4(C5H10N2O2)2(C2H3N)2]F(000) = 668
Mr = 659.33Dx = 1.637 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3934 (4) ÅCell parameters from 3607 reflections
b = 15.9822 (5) Åθ = 2.3–27.2°
c = 7.6498 (3) ŵ = 2.03 mm1
β = 106.226 (4)°T = 293 K
V = 1337.48 (9) Å3Block, green
Z = 20.45 × 0.2 × 0.1 mm
Data collection top
Rigaku Xcalibur, Eos
diffractometer
3062 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.1593 pixels mm-1θmax = 28.3°, θmin = 1.9°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1821
Tmin = 0.839, Tmax = 1.000l = 99
9132 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3062 reflectionsΔρmax = 0.30 e Å3
158 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.32946 (3)0.47882 (2)0.91290 (4)0.03655 (12)
Cl10.45100 (6)0.48716 (4)1.20189 (9)0.04438 (18)
Cl20.23810 (6)0.60138 (4)0.93837 (10)0.04752 (19)
O10.14691 (18)0.38325 (11)0.9411 (3)0.0501 (5)
O20.12145 (16)0.24499 (11)0.9610 (3)0.0471 (5)
N10.37558 (18)0.35720 (12)0.9058 (3)0.0359 (5)
N20.4841 (2)0.32429 (13)0.9131 (3)0.0406 (6)
H20.541 (2)0.3509 (10)0.9021 (5)0.049*
N30.2412 (2)0.47671 (13)0.6418 (3)0.0452 (6)
C10.4879 (2)0.24100 (15)0.9412 (4)0.0414 (7)
C20.6021 (3)0.19159 (18)0.9591 (5)0.0628 (10)
H2A0.6247150.1947920.8474400.094*
H2B0.5880900.1342320.9846600.094*
H2C0.6667790.2140251.0566830.094*
C30.3747 (2)0.21906 (15)0.9510 (4)0.0417 (6)
H30.3476350.1655690.9679980.050*
C40.3075 (2)0.29279 (15)0.9307 (3)0.0356 (6)
C50.1848 (2)0.31277 (16)0.9433 (4)0.0375 (6)
C60.0021 (2)0.2595 (2)0.9877 (4)0.0567 (8)
H6A0.0495650.2897510.8848150.068*
H6B0.0097480.2923211.0969640.068*
C70.0522 (3)0.1761 (2)1.0052 (5)0.0624 (9)
H7A0.0715690.1477550.8900010.094*
H7B0.1253870.1834161.0423090.094*
H7C0.0053830.1433121.0946530.094*
C80.1955 (3)0.48097 (15)0.4916 (4)0.0417 (6)
C90.1373 (4)0.4863 (2)0.2988 (4)0.0710 (10)
H9A0.1502660.4351660.2411280.107*
H9B0.1715600.5321630.2484130.107*
H9C0.0511420.4952500.2782680.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0379 (2)0.03067 (19)0.0376 (2)0.00332 (12)0.00486 (14)0.00063 (12)
Cl10.0504 (4)0.0426 (4)0.0359 (4)0.0007 (3)0.0049 (3)0.0039 (3)
Cl20.0448 (4)0.0378 (4)0.0559 (5)0.0095 (3)0.0074 (3)0.0022 (3)
O10.0491 (12)0.0414 (11)0.0637 (14)0.0052 (9)0.0224 (10)0.0034 (9)
O20.0351 (10)0.0452 (11)0.0642 (14)0.0029 (8)0.0190 (9)0.0025 (9)
N10.0305 (11)0.0312 (11)0.0449 (14)0.0011 (9)0.0088 (10)0.0021 (9)
N20.0329 (12)0.0353 (12)0.0544 (16)0.0048 (9)0.0133 (11)0.0057 (10)
N30.0471 (14)0.0425 (13)0.0431 (15)0.0053 (10)0.0077 (12)0.0029 (10)
C10.0382 (15)0.0301 (13)0.0526 (18)0.0006 (11)0.0074 (13)0.0075 (11)
C20.0442 (17)0.0463 (17)0.094 (3)0.0062 (13)0.0121 (18)0.0150 (16)
C30.0399 (15)0.0311 (13)0.0517 (18)0.0041 (11)0.0085 (13)0.0003 (11)
C40.0338 (13)0.0329 (13)0.0382 (16)0.0032 (10)0.0069 (11)0.0037 (10)
C50.0370 (14)0.0385 (15)0.0368 (16)0.0040 (11)0.0101 (12)0.0034 (11)
C60.0422 (17)0.073 (2)0.059 (2)0.0066 (14)0.0209 (16)0.0057 (16)
C70.0416 (17)0.084 (2)0.062 (2)0.0189 (15)0.0156 (16)0.0033 (17)
C80.0464 (16)0.0391 (15)0.0406 (18)0.0057 (11)0.0136 (13)0.0044 (11)
C90.090 (3)0.083 (2)0.038 (2)0.0103 (19)0.0133 (19)0.0022 (16)
Geometric parameters (Å, º) top
Cu1—Cl1i2.9242 (8)C2—H2A0.9600
Cu1—Cl12.2609 (7)C2—H2B0.9600
Cu1—Cl22.2521 (7)C2—H2C0.9600
Cu1—O12.637 (2)C3—H30.9300
Cu1—N12.0182 (19)C3—C41.390 (3)
Cu1—N32.036 (2)C4—C51.462 (4)
O1—C51.205 (3)C6—H6A0.9700
O2—C51.330 (3)C6—H6B0.9700
O2—C61.449 (3)C6—C71.492 (4)
N1—N21.330 (3)C7—H7A0.9600
N1—C41.335 (3)C7—H7B0.9600
N2—H20.80 (3)C7—H7C0.9600
N2—C11.347 (3)C8—C91.441 (4)
N3—C81.123 (4)C9—H9A0.9600
C1—C21.495 (4)C9—H9B0.9600
C1—C31.360 (4)C9—H9C0.9600
Cl1—Cu1—Cl1i86.62 (3)H2A—C2—H2C109.5
Cl1—Cu1—O1103.64 (5)H2B—C2—H2C109.5
Cl2—Cu1—Cl192.05 (3)C1—C3—H3127.0
Cl2—Cu1—Cl1i108.61 (3)C1—C3—C4106.1 (2)
Cl2—Cu1—O195.89 (5)C4—C3—H3127.0
O1—Cu1—Cl1i153.19 (4)N1—C4—C3110.2 (2)
N1—Cu1—Cl189.44 (6)N1—C4—C5116.5 (2)
N1—Cu1—Cl1i85.41 (6)C3—C4—C5133.2 (2)
N1—Cu1—Cl2165.96 (7)O1—C5—O2124.1 (2)
N1—Cu1—O170.22 (7)O1—C5—C4123.3 (2)
N1—Cu1—N390.84 (8)O2—C5—C4112.6 (2)
N3—Cu1—Cl1171.83 (7)O2—C6—H6A110.2
N3—Cu1—Cl1i85.27 (7)O2—C6—H6B110.2
N3—Cu1—Cl289.66 (6)O2—C6—C7107.4 (2)
N3—Cu1—O184.12 (8)H6A—C6—H6B108.5
C5—O1—Cu1104.76 (17)C7—C6—H6A110.2
C5—O2—C6116.2 (2)C7—C6—H6B110.2
N2—N1—Cu1128.73 (16)C6—C7—H7A109.5
N2—N1—C4105.05 (19)C6—C7—H7B109.5
C4—N1—Cu1124.95 (17)C6—C7—H7C109.5
N1—N2—H2123.6H7A—C7—H7B109.5
N1—N2—C1112.7 (2)H7A—C7—H7C109.5
C1—N2—H2123.6H7B—C7—H7C109.5
C8—N3—Cu1175.2 (2)N3—C8—C9179.8 (4)
N2—C1—C2121.7 (2)C8—C9—H9A109.5
N2—C1—C3105.9 (2)C8—C9—H9B109.5
C3—C1—C2132.4 (2)C8—C9—H9C109.5
C1—C2—H2A109.5H9A—C9—H9B109.5
C1—C2—H2B109.5H9A—C9—H9C109.5
C1—C2—H2C109.5H9B—C9—H9C109.5
H2A—C2—H2B109.5
Cu1—O1—C5—O2178.2 (2)N2—C1—C3—C41.0 (3)
Cu1—O1—C5—C40.4 (3)C1—C3—C4—N11.1 (3)
Cu1—N1—N2—C1167.66 (19)C1—C3—C4—C5174.1 (3)
Cu1—N1—C4—C3168.89 (18)C2—C1—C3—C4177.7 (3)
Cu1—N1—C4—C57.2 (3)C3—C4—C5—O1171.4 (3)
N1—N2—C1—C2178.3 (3)C3—C4—C5—O27.4 (4)
N1—N2—C1—C30.5 (3)C4—N1—N2—C10.2 (3)
N1—C4—C5—O13.7 (4)C5—O2—C6—C7179.7 (2)
N1—C4—C5—O2177.6 (2)C6—O2—C5—O13.1 (4)
N2—N1—C4—C30.8 (3)C6—O2—C5—C4175.7 (2)
N2—N1—C4—C5175.3 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.80 (2)2.72 (2)3.281 (2)129 (2)
N2—H2···Cl2i0.80 (2)2.59 (2)3.273 (2)145 (1)
C7—H7A···Cl2ii0.962.793.662 (4)151
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y1/2, z+3/2.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction "Mathematical sciences and natural sciences" at Taras Shevchenko National University of Kyive (grant No. 21BNN-06).

References

First citationChandrasekhar, V., Nagarajan, L., Clérac, R., Ghosh, S., Senapati, T. & Verma, S. (2008). Inorg. Chem. 47, 5347–5354.  CSD CrossRef PubMed CAS Google Scholar
First citationContaldi, S., Di Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 4928–4941.  CSD CrossRef Google Scholar
First citationDavydenko, Y. M., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2013). Z. Anorg. Allg. Chem. 639, 1472–1476.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDubs, C., Yamamoto, T., Inagaki, A. & Akita, M. (2006). Organometallics, 25, 1344–1358.  CSD CrossRef CAS Google Scholar
First citationElguero, J., Infantes, L., Foces-Foces, C. M., Claramunt, R., López, C. & Jagerovic, N. (1999). Heterocycles, 50, 227–242.  CSD CrossRef Google Scholar
First citationGalassi, R., Burini, A. & Mohamed, A. A. (2012). Eur. J. Inorg. Chem. 2012, 3257–3261.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, H. (2011). Acta Cryst. E67, m140.  CSD CrossRef IUCr Journals Google Scholar
First citationKokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183–237. Amsterdam: Elsevier.  Google Scholar
First citationKonrad, M., Wuthe, S., Meyer, F. & Kaifer, E. (2001). Eur. J. Inorg. Chem. pp. 2233–2240.  CrossRef Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314..  Google Scholar
First citationKulkarni, N. V., Kamath, A., Budagumpi, S. & Revankar, V. K. (2011). J. Mol. Struct. 1006, 580–588.  CrossRef CAS Google Scholar
First citationKupcewicz, B., Sobiesiak, K., Malinowska, K., Koprowska, K., Czyz, M., Keppler, B. & Budzisz, E. (2013). Med. Chem. Res. 22, 2395–2402.  CrossRef CAS PubMed Google Scholar
First citationKusakiewicz-Dawid, A., Porada, M., Dziuk, B. & Siodłak, D. (2019). Molecules, 24, 2632.  Google Scholar
First citationLi, X. & Binnemans, K. (2021). Chem. Rev. 121, 4506–4530.  CrossRef CAS PubMed Google Scholar
First citationLiu, X.-M., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2001). Acta Cryst. C57, 1253–1255.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMague, J. & Ramli, Y. (2018). CSD Communication (CCDC 1872098). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc20v287  Google Scholar
First citationMałecka, M. & Chęcińska, L. (2003). Acta Cryst. C59, m115–m117.  CSD CrossRef IUCr Journals Google Scholar
First citationMalinkin, S. O., Moroz, Y. S., Penkova, L. V., Bon, V. V., Gumienna-Kontecka, E., Pavlenko, V. A., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012). Polyhedron, 37, 77–84.  CSD CrossRef CAS Google Scholar
First citationMezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationMighell, A., Santoro, A., Prince, E. & Reimann, C. (1975). Acta Cryst. B31, 2479–2482.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPlyuta, N., Vassilyeva, O. Yu., Kokozay, V. N., Omelchenko, I. & Petrusenko, S. (2020). Acta Cryst. E76, 423–426.  CSD CrossRef IUCr Journals Google Scholar
First citationRheingold, A. L. (2021). CSD Communication (CCDC 869805). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.ccy637g.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO.Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationRöder, J. C., Meyer, F., Winter, R. F. & Kaifer, E. (2002). J. Organomet. Chem. 641, 113–120.  Google Scholar
First citationSantini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShakirova, O. G., Lavrenova, L. G., Kuratieva, N. V., Naumov, D. Y., Bogomyakov, A. S., Sheludyakova, L. A., Mikhailovskaya, T. F. & Vasilevsky, S. F. (2012). Russ. J. Coord. Chem. 38, 552–559.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSirenko, V. Y., Kucheriv, O. I., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2020). Eur. J. Inorg. Chem. pp. 4523–4531.  CSD CrossRef Google Scholar
First citationSpodine, E., Atria, A. M., Valenzuela, J., Jalocha, J., Manzur, J., García, A. M., Garland, M. T., Peña, O. & Saillard, J.-Y. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3029–3034.  CSD CrossRef Google Scholar
First citationSurmann, S. A. & Mezei, G. (2016). Acta Cryst. E72, 1517–1520.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5.  Google Scholar
First citationVafazadeh, R. C., Willis, A., Mehdi Heidari, M. & Hasanzade, N. (2015). Acta Chim. Slov. 2015, 62, 122–129.  Google Scholar
First citationVincent, C. J., Giles, I. D. & Deschamps, J. R. (2018). Acta Cryst. E74, 357–362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVynohradov, O. S., Pavlenko, V. A., Fritsky, I. O., Gural'skiy, I. A. & Shova, S. (2020a). Russ. J. Inorg. Chem. 65, 1481–1488.  CSD CrossRef CAS Google Scholar
First citationVynohradov, O. S., Pavlenko, V. A., Naumova, D. D., Partsevska, S. V., Shova, S. & Safarmamadov, S. M. (2020b). Acta Cryst. E76, 1641–1644.  CSD CrossRef IUCr Journals Google Scholar
First citationWei, W. & Xu, Y. (2012). Acta Cryst. E68, m557.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds