research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and computational study of a rhodamine B–salicyl­aldehyde Schiff base derivative

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand, bDepartment of Materials Engineering, Faculty of Engineering, Kasetsart University 10900, Thailand, and cFaculty of Science at Si Racha, Kasetsart University Si Racha Campus, Chonburi 20230, Thailand
*Correspondence e-mail: sfsciawn@src.ku.ac.th

Edited by O. Blacque, University of Zürich, Switzerland (Received 24 March 2020; accepted 28 May 2020; online 5 June 2020)

The mol­ecular structure of the title compound {systematic name: 3′,6′-bis(di­ethyl­amino)-2-[(2-hy­droxy­benzyl­idene)amino]­spiro­[isoindoline-1,9′-xan­then]-3-one}, C35H36N4O3 or RbSa, can be seen as being composed of two parts sharing a central quaternary carbon atom. Both the xanthene and iso­indole moieties are nearly planar: 14 atoms in the former moiety show an r.m.s. deviation of 0.0411 Å and eleven atoms in the latter moiety show an r.m.s. deviation of 0.0545 Å. These two planes are almost perpendicular to each other, the angle between the mean planes being 87.71 (2)°. The title compound appears to be in its enol form. The corresponding H atom was located and freely refined at a distance of 1.02 (3) Å from the O atom and 1.72 (2) Å from the N atom. The strong intra­molecular hydrogen bond O—H⋯N bridging the hydroxyl group and its neighboring nitro­gen atom forms an S(6) graph-set motif. Apart from the intra­molecular O—H⋯N hydrogen bond, C—H⋯O inter­actions are observed between two neighbouring RbSa mol­ecules related by an inversion center. The C—O donor–acceptor distance is 3.474 (2) Å. Moreover, C—H⋯π inter­actions are observed between the C—H bond of one of the ethyl groups and the centroid of the benzene ring of the iso­indole moiety. The C⋯centroid distance is 3.8191 (15) Å. No ππ inter­actions are observed in the crystal structure as the shortest distance between ring centroids is more than 4 Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N inter­actions. DFT calculations at the CAM-B3LYP/6–31 G(d) level were carried out to gain a better understanding of the relative energies and the tautomerization process between two possible conformers (keto and enol), as well as the transition state of the title compound.

1. Chemical context

Rhodamine B derivatives are employed extensively as mol­ecular probes in the study of complex biological systems because of their high absorption coefficients, high fluorescence quantum yields and long-wavelength absorptions and emissions (Bao et al., 2013[Bao, X., Liu, D., Jin, Y., Liu, X. & Jiang, W. (2013). RSC Adv. 3, 6783-6786.]; Biswal & Bag, 2013[Biswal, B. & Bag, B. (2013). Org. Biomol. Chem. 11, 4975-4992.]). On the basis of the spiro­lactam/ring-opened amide equilibrium of rhodamine, several fluorescence-based sensing systems for metal ions have been developed. Most of the reported sensors based on rhodamine B derivatives are fluorescent chemosensors for metal ion detection (Quang & Kim, 2010[Quang, D. T. & Kim, J. S. (2010). Chem. Rev. 110, 6280-6301.]; Kim et al., 2008[Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S. & Yoon, J. (2008). Chem. Soc. Rev. 37, 1465-1472.]; Kwon et al., 2005[Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, J. (2005). J. Am. Chem. Soc. 127, 10107-10111.]; Liu et al., 2013[Liu, J., Wu, D., Yan, X. & Guan, Y. (2013). Talanta, 116, 563-568.]; Ni et al., 2013[Ni, J., Li, Q., Li, B. & Zhang, L. (2013). Sens. Actuators B Chem. 186, 278-285.]). A rhodamine B derivative is usually used as a chemosensor because of its good photophysical properties, sensitivity, the low cost of chemical reagents and the ease of modifying its structure. Rhodamine B derivatives have naked-eye detection and show off–on fluorescent property when reacting with metal ions.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the title compound (rhodamine B – salicyl­aldehyde derivative, RbSa) together with the atomic labelling scheme. The title compound crystallizes in the monoclinic space group P21/c, and the asymmetric unit contains a single mol­ecule in a general position. The mol­ecule can be seen as having two distinct parts sharing a central quaternary carbon atom. The atoms in the xanthene moiety, namely C5–C10, O1, C11–C17, are almost coplanar, as seen from the r.m.s. deviation of 0.0411 Å (Fig. 2[link]a). The atoms C11, C22–C28, O2, N3 and N4 of the iso­indole unit are also nearly coplanar with an r.m.s. deviation of 0.0545 Å (Fig. 2[link]b). These two planes are almost perpendicular to each other, the dihedral angle between their mean planes being 87.71 (2)° (Fig. 2[link]c). The four ethyl groups present in the mol­ecule point out of the xanthene plane and are on the same side of the plane; the corresponding out-of-plane torsion angles C16—N2—C19—C18, C16—N2—C21—C20, C5—N1—C2—C1 and C5—N1—C4—C3 are 73.76 (15), −79.52 (15), −86.26 (15) and 65.09 (16)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of RbSa, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The non-IUPAC atom labelling is for the convenience of discussion.
[Figure 2]
Figure 2
(a) The xanthene plane that is a mean plane constructed from 14 atoms, namely C5, C6–C10, O1, C11–C17. (b) a mean plane constructed from 11 atoms, namely C11, C22–C28, O2, N3, and N4. (c) View of the mol­ecule showing that planes (a) and (b) are roughly perpendicular to each other.

The major tautomer of the rhodamine B – salicyl­aldehyde Schiff-base derivative is usually the enol form for compounds having hy­droxy and aza­methyl­ene groups attached to the benzene ring in the ortho positions (Veranitisagul et al., 2012[Veranitisagul, C., Wattanathana, W., Kaewvilai, A., Duangthongyou, T., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o1826.]; Wattanathana et al., 2012[Wattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050.], 2016[Wattanathana, W., Nootsuwan, N., Veranitisagul, C., Koonsaeng, N., Suramitr, S. & Laobuthee, A. (2016). J. Mol. Struct. 1109, 201-208.]). Similarly, our title compound appears to be in its enol form. The corresponding H atom was located and freely refined at a distance of 1.02 (3) Å from the O atom and 1.72 (2) Å from the N atom (Table 1[link], Fig. 3[link]). The strong intra­molecular O—H⋯N hydrogen bond bridging the hydroxyl group and its neighbouring nitro­gen atom forms an S(6) graph-set motif involving atoms N4, H3, O3, C35, C30 and C29 and stabilizes a rigid configuration that can partially inhibit the rotation of the phenyl ring about the N—N bond.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31⋯O3i 0.95 2.77 3.4737 (19) 131
O3—H3⋯N4 1.02 (3) 1.72 (2) 2.6276 (15) 145 (2)
C18—H18ACgii 0.98 2.88 3.8191 (15) 161
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.
[Figure 3]
Figure 3
A view of mol­ecule illustrating the S(6) ring of the intra­molecular hydrogen bond constructed from the N4—C29—C30—C35—O3—H3 synthon.

3. Supra­molecular features

Besides the intra­molecular O—H⋯N hydrogen bond, the title mol­ecules form C31–H31⋯O3i inter­actions [symmetry code: (i) x, −y + [{3\over 2}], z − [{1\over 2}]] between two neighbouring RbSa mol­ecules related by an inversion center (Fig. 4[link]). The C31⋯O3i donor-acceptor distance is 3.474 (2) Å. Moreover, C—H⋯π inter­actions are observed between C18—H18A and the benzene ring (C22–C27) of the iso­indole unit (Fig. 5[link]). Within the crystal structure, the RbSa mol­ecules aggregate into infinite mol­ecular chains in an end-to-end packing mode along the [100] direction. No ππ inter­actions are observed in the crystal structure as the shortest distance between ring centroids is greater than 4 Å.

[Figure 4]
Figure 4
The unit cell and mol­ecular packing in the title compound with the unit-cell contents projecting down the [100] direction. The orange dots represent inversion centres and the green and magenta lines represent glide planes and twofold axes, respectively.
[Figure 5]
Figure 5
A view of the crystal packing showing C—H⋯π inter­actions between C18—H18A and the C22–C27 ring of the iso­indole unit.

4. Hirshfeld surface analysis

The inter­molecular inter­actions in the crystal of the title compound were investigated and visualized by performing a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using Crystal Explorer 17.5 software (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.]). The HS plotted over dnorm in the range −0.1732 to 1.4064 a.u. is shown in Fig. 6[link]. Fig. 7[link] shows the full two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and those delineated into the major contacts: H⋯H (61.5%), H⋯C/C⋯H (20.3%), H⋯O/O⋯H (11.7%), and H⋯N/N⋯H (1.9%) for which de + di ∼2.0, 3.0, 2.8 and 3.4 Å, respectively. The other contacts are negligible with individual contributions of less than 1% and a sum of less than 5%.

[Figure 6]
Figure 6
Two views of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1732 to 1.4064 a.u.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, and (e) N⋯H/H⋯N inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, November 2019 + one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that the crystal structures of many compounds having rhodamine B as a core have been reported. The structural diversity of rhodamine B derivatives results from the fact that the different functional groups in the mol­ecules can be tuned. For example, the carb­oxy­lic functional group can be converted to ester functional groups such as methyl ester derivatives (I)[link] (ROKNOU; Fun et al., 1997[Fun, H.-K., Chinnakali, K., Sivakumar, K., Lu, C.-M., Xiong, R.-G. & You, X.-Z. (1997). Acta Cryst. C53, 1619-1620.]) and (II) (QIMMII; Adhikesavalu et al., 2001[Adhikesavalu, D. N., Mastropaolo, D., Camerman, A. & Camerman, N. (2001). Acta Cryst. C57, 657-659.]), ethyl ester derivatives (III) (QIMMEE; Adhikesavalu et al., 2001[Adhikesavalu, D. N., Mastropaolo, D., Camerman, A. & Camerman, N. (2001). Acta Cryst. C57, 657-659.]) and cyclic lactones (IV) (FUFTIJ; Kvick et al., 2000[Kvick, Å., Vaughan, G. B. M., Wang, X., Sun, Y. & Long, Y. (2000). Acta Cryst. C56, 1232-1233.]). In our case, the carb­oxy­lic acid functional group is sequentially transformed into a cyclic lactam with a hydrazone side chain. The counter-anions are the other key factor in the crystal structures of rhodamine B derivatives. Mizuguchi (2008[Mizuguchi, J. (2008). Acta Cryst. E64, o1238-o1239.]) reported the crystal structure of the ethyl gallate salt at 93 K (PIHJIA01), and Venkatraman et al. (2008[Venkatraman, R., Sitole, L. & Fronczek, F. R. (2008). Acta Cryst. E64, m199.]) published a new derivative with the hexa­chlorido­stannate(IV) anion, RISQIU. Moreover, rhodamine B derivatives can be used as a ligand for many metal cations to form coordination complexes such as the cadmium complex (V) (IKISUQ; Qu et al., 2001[Qu, J. Q., Wang, L. F., Li, Y. Z., Sun, G. C., Zhu, Q. J. & Xia, C. G. (2001). Synth. React. Inorg. Met.-Org. Chem. 31, 1577-1585.]).

6. Synthesis and crystallization

The reagents were purchased from commercial suppliers and used without further purification: rhodamine B (Fluka Chemicals), hydrazine hydrate (Across Organics), salicyaldehyde (Sigma–Aldrich), hydro­chloric acid (Valchem), ammonium hydroxide (Mallinckrodt Chemicals) and sodium hydroxide (RCI Labscan). Solvents including absolute ethanol (EtOH), methanol (MeOH) and chloroform were purchased from RCI Labscan and Merck. 1H NMR spectra were measured on a Varian INOVA 400 spectrometer at 400 MHz in CDCl3. The FTIR spectrum was obtained using a Bruker Tensor 27 spectrometer, while the mass spectrum was recorded on a Bruker microTOF-Q III. The melting point of the obtained sample was measured by a Stuart Scientific melting-point analyser (SMP10).

Fig. 8[link] shows the chemical structures of the starting materials and inter­mediate and the synthetic route of the rhodamine–Schiff-base derivative studied in this work (RbSa). Firstly, the RbH inter­mediate compound was synthesized from the reaction between rhodamine B and hydrazine hydrate. Rhodamine B (1.20 g, 2.50 mmol) was dissolved in ethanol. An equimolar amount of hydrazine hydrate (2.0 ml, 2.5 mmol) was added to this solution. The mixture was then refluxed at 373 K under N2 for 2 h. During the reaction, the colour of the solution changed from dark purple to light orange. After the reaction was complete, a precipitate of RbH was obtained by solvent evaporation, and then 1 M HCl was added to re-dissolve the crude product to obtain a clear red solution. After that, 1 M NaOH was added slowly in order to precipitate the purer RbH compound out. The obtained RbH was filtered under reduced pressure. The title compound RbSa was then prepared from the reaction of the filtered RbH (0.48 g, 0.97 mmol) and salicyl­aldehyde (0.12 ml, 1 mmol) in ethano­lic solution. A pink precipitate of RbSa formed after reflux at 353 K for 12 h under an N2 atmosphere. The RbSa precipitate was separated by vacuum filtration and washed three times with cold ethanol. After recrystallization from chloro­form and methanol mixed solvents with a volume ratio of 1:1, light-violet single crystals were obtained after several days, m.p. 495 K.

[Figure 8]
Figure 8
The synthetic route and the structures of RbSa.

HR–MS (ESI–TOF) m/z: [M + 1]+ calculated from C35H37N4O3 is 561.286017; found 561.288140.

1H NMR (400 MHz, CDCl3) chemical shifts (δ): 9.31 (s, 1H), 8.10–7.90 (m, 1H), 7.56 (s, 2H), 7.18 (dq, J = 7.2, 4.3, 3.9 Hz, 2H), 7.13 (d, J = 7.8 Hz, 1H), 6.81 (q, J = 7.9, 7.5 Hz, 3H), 6.41 (d, J = 87.7 Hz, 5H), 3.33 (s, 8H), 1.18 (s, 12H).

7. Computational details

All reported calculations (geometry optimizations, vibrational frequencies, and relative energies) were performed using Gaussian09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA.]) using density functional theory (DFT) at the CAM-B3LYP/6–31 G(d) level. The ground-state geometries of the RbSa mol­ecules with different conformers were optimized, and vibrational frequency calculations were performed to confirm that the optimized structures correspond well to a local minimum or a transition state. The hybrid exchange-correlation functional CAM-B3LYP was selected because it has been found to be a method of choice in important reported studies (Klinhom et al., 2019[Klinhom, N., Saengsuwan, N., Sriyab, S., Prompinit, P., Hannongbua, S. & Suramitr, S. (2019). Spectrochim. Acta Part A, 206, 359-366.]; Miengmern et al., 2019[Miengmern, N., Koonwong, A., Sriyab, S., Suramitr, A., Poo-arporn, R. P., Hannongbua, S. & Suramitr, S. (2019). J. Lumin. 210, 493-500.]), showing a good compromise between computational time and the accuracy of the results. All calculations were carried out in ethanol using a conductor-like polarizable continuum model (CPCM) (Scalmani et al., 2006[Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R. & Barone, V. (2006). J. Chem. Phys. 124, 094107.]).

8. Quantum chemical calculations

For a more in-depth insight into the molecular structures of RbSa, density functional theory (DFT) calculations at the CAM-B3LYP/6-311 G(d,p) level were carried out. They were mainly applied to investigate the intra­molecular proton-transfer reaction during the enol–keto tautomerization mechanism. The mol­ecular structures of two essential conformers (the enol and keto forms) of the title compound were first obtained by geometry optimizations without any constraints. Starting from the enol form and going to the keto form, the potential energy curve (PEC) was explored by elongating the O—H bond in steps of 0.1 Å (from 1.0 to 1.8 Å). The CAM-B3LYP optimized conformers and their relative energies are depicted in Fig. 9[link].

[Figure 9]
Figure 9
Optimized structures and relative energies of the enol form, the keto form and the transition state formed during the tautomerization process of the compound RbSa, calculated in ethanol at the CAM-B3LYP level using a 6–311 G(d,p) basis set.

The enol form is the most stable conformer (O—H = 0.98 Å) with the lowest relative energy, and the keto form (O—H = 1.76 Å) is found to be slightly higher in energy than the enol form by 9.1 kcal mol−1. All along the tautomerization path, the six atoms involved in the initial S(6) graph-set motif remain coplanar, but a rotation occurs around the N—N bond between the di­aminoxanthene and the salicyl­idene aniline moieties, which move from being coplanar in the enol form to being nearly perpendicular in the keto-form (Fig. 9[link]). The rotation of the N—N bond gives rise to the elongation and then the breakage of the O—H bond in the enol form, resulting in the formation of the N—H bond (keto form). Although the enol–keto tautomerization involves breakage of the O—H bond, the intra­molecular hydrogen-bonded S(6) ring still remains even in the keto form, involving the same atoms in the synthon as in the enol form. According to the relative energy calculations, it can be concluded that the phenolic –OH group can form a stronger intra­molecular hydrogen-bonding inter­action (enol form) with the N atom of the di­aminoxanthene moiety than with the –NH group of the phenolate O in the keto closed form. The result is in a good agreement with the X-ray crystal structure in that the enol form is the dominant conformer.

Based on the highest energy structure obtained on the PEC, we optimized the mol­ecular geometry of the transition state of the keto–enol tautomerization pathway without constraints. The single negative (imaginary) vibrational frequency calculated for the obtained structure showed that the transition state was correctly determined. The transition state lies 10.4 kcal mol−1 higher in energy than the enol form and only 1.3 kcal mol−1 above that of the keto form (Fig. 9[link]). The optimized structure reveals an O—H distance of 1.30 Å, in between the O—H distances observed in the enol and keto conformers, but closer to that of the enol-conformer. The energy curve is rather flat between the transition state and the keto form, despite a difference of about 0.5 Å between the O—H distances (1.30 and 1.76 Å, respectively). Besides the fact that the enol form exhibits the lowest absolute energy and is the most stable conformer, that flatness also explains why the keto form is not as stable and can easily return to the enol form in solution under normal conditions.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atom (H3) was located in a difference-Fourier map and freely refined. The other hydrogen atoms were refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, with d(C—H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for –CH2– hydrogen atoms and d(C–H) = 0.98 Å, Uiso(H) = 1.5Ueq(C) for the terminal methyl hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula C35H36N4O3
Mr 560.68
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.3903 (7), 26.8178 (19), 11.5639 (8)
β (°) 101.635 (2)
V3) 2852.3 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.67
Crystal size (mm) 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXIII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.673, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 64500, 5508, 5462
Rint 0.030
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.07
No. of reflections 5508
No. of parameters 387
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3',6'-Bis(diethylamino)-2-[(2-hydroxybenzylidene)amino]spiro[isoindoline-1,9'-xanthen]-3-one top
Crystal data top
C35H36N4O3F(000) = 1192
Mr = 560.68Dx = 1.306 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 9.3903 (7) ÅCell parameters from 9681 reflections
b = 26.8178 (19) Åθ = 3.9–72.1°
c = 11.5639 (8) ŵ = 0.67 mm1
β = 101.635 (2)°T = 100 K
V = 2852.3 (4) Å3Block, clear light violet
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker APEXIII CCD
diffractometer
5462 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 72.2°, θmin = 5.1°
Tmin = 0.673, Tmax = 0.754h = 1111
64500 measured reflectionsk = 3331
5508 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.6105P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5508 reflectionsΔρmax = 0.26 e Å3
387 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63421 (9)0.53998 (3)0.51482 (7)0.01990 (19)
O20.35333 (10)0.71057 (3)0.15605 (8)0.0258 (2)
O30.85258 (11)0.67163 (4)0.47128 (9)0.0341 (2)
N30.47258 (11)0.64737 (4)0.27590 (9)0.0182 (2)
N20.78424 (11)0.43998 (4)0.22361 (9)0.0203 (2)
N40.61281 (11)0.66475 (4)0.30950 (9)0.0197 (2)
N10.54337 (12)0.63079 (4)0.84325 (9)0.0228 (2)
C270.22734 (13)0.63956 (4)0.22148 (10)0.0181 (2)
C120.52489 (12)0.55798 (4)0.31027 (10)0.0163 (2)
C90.56210 (12)0.58015 (4)0.55053 (10)0.0167 (2)
C220.27539 (12)0.59856 (4)0.29156 (10)0.0165 (2)
C80.46927 (12)0.61076 (4)0.47253 (10)0.0165 (2)
C130.61868 (12)0.53104 (4)0.39588 (10)0.0163 (2)
C170.70486 (13)0.49250 (4)0.36853 (10)0.0174 (2)
H170.7679030.4753580.4303720.021*
C280.35267 (13)0.67139 (4)0.21032 (10)0.0185 (2)
C160.70031 (12)0.47851 (4)0.25124 (10)0.0173 (2)
C100.58838 (13)0.58696 (5)0.67180 (10)0.0188 (2)
H100.6529380.5650770.7215740.023*
C110.43818 (12)0.60188 (4)0.34033 (10)0.0165 (2)
C70.40438 (13)0.64983 (5)0.52325 (11)0.0199 (3)
H70.3406340.6716990.4727300.024*
C50.52106 (13)0.62564 (5)0.72189 (11)0.0190 (2)
C60.42897 (13)0.65798 (5)0.64345 (11)0.0212 (3)
H60.3839170.6854080.6737460.025*
C240.03086 (13)0.57033 (5)0.26884 (11)0.0219 (3)
H240.0380190.5465940.2843380.026*
C230.17839 (13)0.56257 (5)0.31441 (10)0.0190 (2)
H230.2113320.5336860.3594960.023*
C150.60465 (13)0.50567 (5)0.16302 (11)0.0207 (3)
H150.5983890.4975890.0821700.025*
C260.08054 (14)0.64726 (5)0.17477 (11)0.0219 (3)
H260.0484060.6754170.1266990.026*
C140.52070 (13)0.54367 (5)0.19346 (11)0.0203 (3)
H140.4570220.5609450.1322510.024*
C250.01736 (13)0.61228 (5)0.20097 (11)0.0231 (3)
H250.1185810.6170150.1722460.028*
C290.66197 (14)0.69802 (5)0.24752 (11)0.0226 (3)
H290.6037430.7092380.1753140.027*
C210.88015 (14)0.41198 (5)0.31614 (11)0.0228 (3)
H21A0.9012010.3792770.2835560.027*
H21B0.8279100.4055440.3809330.027*
C300.80710 (15)0.71842 (5)0.28840 (12)0.0249 (3)
C40.67041 (14)0.60808 (5)0.91783 (11)0.0250 (3)
H4A0.6702750.5719110.9007190.030*
H4B0.6630830.6120911.0015350.030*
C190.78644 (15)0.42836 (5)0.10088 (11)0.0230 (3)
H19A0.6850460.4270150.0557150.028*
H19B0.8295330.3948430.0973430.028*
C20.46026 (14)0.66609 (5)0.89867 (11)0.0236 (3)
H2A0.4543980.6533050.9778870.028*
H2B0.3599640.6675430.8513500.028*
C350.89543 (15)0.70507 (5)0.39724 (13)0.0284 (3)
C30.81405 (15)0.63038 (6)0.90053 (12)0.0310 (3)
H3A0.8204260.6278840.8171760.046*
H3B0.8949970.6120700.9489260.046*
H3C0.8190470.6655050.9243690.046*
C180.87120 (16)0.46553 (5)0.04151 (12)0.0287 (3)
H18A0.8667190.4555020.0406370.043*
H18B0.9728240.4661950.0835810.043*
H18C0.8286010.4988050.0433860.043*
C201.02371 (15)0.43748 (5)0.36756 (13)0.0291 (3)
H20A1.0775560.4435300.3046080.044*
H20B1.0813750.4160200.4280030.044*
H20C1.0046430.4693160.4031790.044*
C10.52129 (17)0.71867 (5)0.91209 (13)0.0319 (3)
H1A0.5177600.7332060.8338120.048*
H1B0.6222930.7176680.9555310.048*
H1C0.4632190.7390670.9555910.048*
C310.85986 (17)0.75357 (5)0.21765 (14)0.0332 (3)
H310.8009830.7631650.1442810.040*
C320.99603 (19)0.77443 (6)0.25302 (17)0.0412 (4)
H321.0311130.7978000.2036960.049*
C341.03266 (16)0.72693 (6)0.43299 (16)0.0377 (4)
H341.0921000.7182190.5068060.045*
C331.08133 (17)0.76114 (6)0.36078 (17)0.0430 (4)
H331.1746540.7757960.3852790.052*
H30.752 (3)0.6591 (9)0.431 (2)0.069 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (4)0.0236 (4)0.0129 (4)0.0070 (3)0.0017 (3)0.0005 (3)
O20.0281 (5)0.0213 (5)0.0272 (5)0.0023 (4)0.0035 (4)0.0077 (4)
O30.0246 (5)0.0390 (6)0.0363 (6)0.0069 (4)0.0001 (4)0.0078 (4)
N30.0162 (5)0.0190 (5)0.0188 (5)0.0012 (4)0.0022 (4)0.0035 (4)
N20.0205 (5)0.0219 (5)0.0190 (5)0.0026 (4)0.0049 (4)0.0014 (4)
N40.0169 (5)0.0197 (5)0.0233 (5)0.0016 (4)0.0062 (4)0.0019 (4)
N10.0207 (5)0.0305 (6)0.0171 (5)0.0025 (4)0.0034 (4)0.0042 (4)
C270.0193 (6)0.0197 (6)0.0148 (5)0.0016 (5)0.0025 (4)0.0018 (4)
C120.0140 (5)0.0188 (6)0.0162 (5)0.0012 (4)0.0028 (4)0.0014 (4)
C90.0137 (5)0.0185 (6)0.0180 (6)0.0007 (4)0.0036 (4)0.0005 (4)
C220.0154 (6)0.0204 (6)0.0134 (5)0.0012 (4)0.0023 (4)0.0022 (4)
C80.0134 (5)0.0195 (6)0.0164 (6)0.0024 (4)0.0024 (4)0.0003 (4)
C130.0154 (5)0.0200 (6)0.0134 (5)0.0023 (4)0.0030 (4)0.0003 (4)
C170.0155 (5)0.0206 (6)0.0157 (5)0.0006 (4)0.0020 (4)0.0026 (4)
C280.0211 (6)0.0188 (6)0.0155 (5)0.0021 (5)0.0031 (4)0.0002 (4)
C160.0152 (5)0.0185 (6)0.0190 (6)0.0023 (4)0.0053 (4)0.0004 (4)
C100.0162 (5)0.0230 (6)0.0164 (6)0.0005 (5)0.0014 (4)0.0006 (5)
C110.0151 (5)0.0177 (6)0.0163 (6)0.0009 (4)0.0022 (4)0.0028 (4)
C70.0173 (6)0.0210 (6)0.0206 (6)0.0011 (5)0.0017 (5)0.0008 (5)
C50.0152 (5)0.0238 (6)0.0178 (6)0.0035 (5)0.0030 (4)0.0027 (5)
C60.0187 (6)0.0220 (6)0.0230 (6)0.0005 (5)0.0049 (5)0.0042 (5)
C240.0182 (6)0.0286 (7)0.0190 (6)0.0046 (5)0.0043 (5)0.0040 (5)
C230.0190 (6)0.0223 (6)0.0155 (5)0.0009 (5)0.0031 (4)0.0000 (4)
C150.0204 (6)0.0270 (6)0.0146 (6)0.0005 (5)0.0030 (5)0.0011 (5)
C260.0207 (6)0.0237 (6)0.0193 (6)0.0055 (5)0.0010 (5)0.0020 (5)
C140.0184 (6)0.0260 (6)0.0152 (6)0.0022 (5)0.0004 (4)0.0030 (5)
C250.0154 (6)0.0310 (7)0.0211 (6)0.0033 (5)0.0005 (5)0.0059 (5)
C290.0251 (6)0.0210 (6)0.0233 (6)0.0005 (5)0.0089 (5)0.0002 (5)
C210.0251 (6)0.0182 (6)0.0251 (6)0.0039 (5)0.0051 (5)0.0008 (5)
C300.0247 (6)0.0198 (6)0.0337 (7)0.0014 (5)0.0140 (5)0.0049 (5)
C40.0279 (7)0.0312 (7)0.0150 (6)0.0024 (5)0.0024 (5)0.0011 (5)
C190.0266 (6)0.0218 (6)0.0216 (6)0.0006 (5)0.0070 (5)0.0046 (5)
C20.0243 (6)0.0268 (7)0.0209 (6)0.0003 (5)0.0077 (5)0.0025 (5)
C350.0245 (7)0.0244 (7)0.0389 (8)0.0034 (5)0.0127 (6)0.0033 (6)
C30.0224 (7)0.0430 (8)0.0256 (7)0.0025 (6)0.0001 (5)0.0057 (6)
C180.0343 (7)0.0289 (7)0.0266 (7)0.0014 (6)0.0148 (6)0.0016 (5)
C200.0221 (7)0.0307 (7)0.0331 (7)0.0046 (5)0.0025 (5)0.0019 (6)
C10.0384 (8)0.0276 (7)0.0301 (7)0.0034 (6)0.0077 (6)0.0012 (6)
C310.0397 (8)0.0232 (7)0.0420 (8)0.0045 (6)0.0206 (7)0.0024 (6)
C320.0438 (9)0.0266 (7)0.0615 (11)0.0123 (7)0.0304 (8)0.0067 (7)
C340.0244 (7)0.0379 (8)0.0513 (9)0.0051 (6)0.0086 (6)0.0074 (7)
C330.0283 (8)0.0346 (8)0.0708 (12)0.0142 (6)0.0214 (8)0.0154 (8)
Geometric parameters (Å, º) top
O1—C91.3792 (14)C15—C141.3768 (18)
O1—C131.3747 (14)C26—H260.9500
O2—C281.2246 (15)C26—C251.3890 (19)
O3—C351.3558 (17)C14—H140.9500
O3—H31.02 (3)C25—H250.9500
N3—N41.3769 (14)C29—H290.9500
N3—C281.3833 (15)C29—C301.4561 (19)
N3—C111.4982 (14)C21—H21A0.9900
N2—C161.3758 (16)C21—H21B0.9900
N2—C211.4599 (16)C21—C201.5216 (19)
N2—C191.4572 (16)C30—C351.407 (2)
N4—C291.2870 (17)C30—C311.4025 (19)
N1—C51.3834 (16)C4—H4A0.9900
N1—C41.4569 (17)C4—H4B0.9900
N1—C21.4551 (16)C4—C31.525 (2)
C27—C221.3864 (17)C19—H19A0.9900
C27—C281.4803 (17)C19—H19B0.9900
C27—C261.3907 (17)C19—C181.5227 (18)
C12—C131.3879 (16)C2—H2A0.9900
C12—C111.5113 (16)C2—H2B0.9900
C12—C141.3970 (17)C2—C11.5183 (19)
C9—C81.3892 (17)C35—C341.400 (2)
C9—C101.3861 (17)C3—H3A0.9800
C22—C111.5215 (16)C3—H3B0.9800
C22—C231.3885 (17)C3—H3C0.9800
C8—C111.5163 (16)C18—H18A0.9800
C8—C71.3990 (17)C18—H18B0.9800
C13—C171.3878 (17)C18—H18C0.9800
C17—H170.9500C20—H20A0.9800
C17—C161.3997 (17)C20—H20B0.9800
C16—C151.4172 (17)C20—H20C0.9800
C10—H100.9500C1—H1A0.9800
C10—C51.3996 (17)C1—H1B0.9800
C7—H70.9500C1—H1C0.9800
C7—C61.3798 (18)C31—H310.9500
C5—C61.4165 (18)C31—C321.380 (2)
C6—H60.9500C32—H320.9500
C24—H240.9500C32—C331.385 (3)
C24—C231.3949 (17)C34—H340.9500
C24—C251.3941 (19)C34—C331.379 (2)
C23—H230.9500C33—H330.9500
C15—H150.9500
C13—O1—C9118.45 (9)C24—C25—H25119.5
C35—O3—H3107.4 (13)C26—C25—C24120.91 (11)
N4—N3—C28128.56 (10)C26—C25—H25119.5
N4—N3—C11115.17 (9)N4—C29—H29120.1
C28—N3—C11114.74 (9)N4—C29—C30119.81 (12)
C16—N2—C21120.92 (10)C30—C29—H29120.1
C16—N2—C19120.53 (10)N2—C21—H21A108.5
C19—N2—C21118.42 (10)N2—C21—H21B108.5
C29—N4—N3120.51 (11)N2—C21—C20114.97 (11)
C5—N1—C4119.81 (10)H21A—C21—H21B107.5
C5—N1—C2121.79 (11)C20—C21—H21A108.5
C2—N1—C4117.32 (10)C20—C21—H21B108.5
C22—C27—C28109.72 (10)C35—C30—C29122.63 (12)
C22—C27—C26121.67 (12)C31—C30—C29118.74 (13)
C26—C27—C28128.59 (11)C31—C30—C35118.62 (13)
C13—C12—C11122.36 (10)N1—C4—H4A108.9
C13—C12—C14115.90 (11)N1—C4—H4B108.9
C14—C12—C11121.66 (10)N1—C4—C3113.50 (11)
O1—C9—C8123.28 (10)H4A—C4—H4B107.7
O1—C9—C10114.06 (10)C3—C4—H4A108.9
C10—C9—C8122.65 (11)C3—C4—H4B108.9
C27—C22—C11110.76 (10)N2—C19—H19A108.7
C27—C22—C23120.92 (11)N2—C19—H19B108.7
C23—C22—C11128.22 (11)N2—C19—C18114.24 (11)
C9—C8—C11122.00 (11)H19A—C19—H19B107.6
C9—C8—C7116.08 (11)C18—C19—H19A108.7
C7—C8—C11121.92 (10)C18—C19—H19B108.7
O1—C13—C12123.16 (11)N1—C2—H2A108.5
O1—C13—C17114.14 (10)N1—C2—H2B108.5
C12—C13—C17122.71 (11)N1—C2—C1115.10 (11)
C13—C17—H17119.5H2A—C2—H2B107.5
C13—C17—C16121.01 (11)C1—C2—H2A108.5
C16—C17—H17119.5C1—C2—H2B108.5
O2—C28—N3126.36 (12)O3—C35—C30122.46 (12)
O2—C28—C27128.73 (11)O3—C35—C34117.59 (14)
N3—C28—C27104.91 (10)C34—C35—C30119.94 (14)
N2—C16—C17121.29 (11)C4—C3—H3A109.5
N2—C16—C15121.91 (11)C4—C3—H3B109.5
C17—C16—C15116.80 (11)C4—C3—H3C109.5
C9—C10—H10119.6H3A—C3—H3B109.5
C9—C10—C5120.88 (11)H3A—C3—H3C109.5
C5—C10—H10119.6H3B—C3—H3C109.5
N3—C11—C12109.86 (9)C19—C18—H18A109.5
N3—C11—C2299.47 (9)C19—C18—H18B109.5
N3—C11—C8110.89 (9)C19—C18—H18C109.5
C12—C11—C22114.63 (10)H18A—C18—H18B109.5
C12—C11—C8110.56 (9)H18A—C18—H18C109.5
C8—C11—C22110.96 (9)H18B—C18—H18C109.5
C8—C7—H7118.6C21—C20—H20A109.5
C6—C7—C8122.85 (11)C21—C20—H20B109.5
C6—C7—H7118.6C21—C20—H20C109.5
N1—C5—C10120.35 (11)H20A—C20—H20B109.5
N1—C5—C6122.44 (11)H20A—C20—H20C109.5
C10—C5—C6117.20 (11)H20B—C20—H20C109.5
C7—C6—C5120.31 (11)C2—C1—H1A109.5
C7—C6—H6119.8C2—C1—H1B109.5
C5—C6—H6119.8C2—C1—H1C109.5
C23—C24—H24119.4H1A—C1—H1B109.5
C25—C24—H24119.4H1A—C1—H1C109.5
C25—C24—C23121.21 (12)H1B—C1—H1C109.5
C22—C23—C24117.65 (11)C30—C31—H31119.5
C22—C23—H23121.2C32—C31—C30120.98 (16)
C24—C23—H23121.2C32—C31—H31119.5
C16—C15—H15119.7C31—C32—H32120.1
C14—C15—C16120.59 (11)C31—C32—C33119.70 (15)
C14—C15—H15119.7C33—C32—H32120.1
C27—C26—H26121.2C35—C34—H34120.1
C25—C26—C27117.57 (12)C33—C34—C35119.83 (16)
C25—C26—H26121.2C33—C34—H34120.1
C12—C14—H14118.5C32—C33—H33119.5
C15—C14—C12122.99 (11)C34—C33—C32120.91 (14)
C15—C14—H14118.5C34—C33—H33119.5
O1—C9—C8—C110.75 (17)C10—C9—C8—C11178.13 (11)
O1—C9—C8—C7179.83 (10)C10—C9—C8—C70.94 (17)
O1—C9—C10—C5178.87 (10)C10—C5—C6—C72.22 (18)
O1—C13—C17—C16179.34 (10)C11—N3—N4—C29168.12 (11)
O3—C35—C34—C33179.94 (14)C11—N3—C28—O2175.66 (11)
N3—N4—C29—C30175.92 (11)C11—N3—C28—C274.11 (13)
N2—C16—C15—C14179.21 (11)C11—C12—C13—O13.95 (18)
N4—N3—C28—O210.6 (2)C11—C12—C13—C17176.23 (11)
N4—N3—C28—C27169.16 (11)C11—C12—C14—C15176.21 (11)
N4—N3—C11—C1266.11 (12)C11—C22—C23—C24173.34 (11)
N4—N3—C11—C22173.25 (9)C11—C8—C7—C6178.70 (11)
N4—N3—C11—C856.40 (13)C7—C8—C11—N356.81 (14)
N4—C29—C30—C353.20 (19)C7—C8—C11—C12178.91 (10)
N4—C29—C30—C31178.18 (12)C7—C8—C11—C2252.75 (15)
N1—C5—C6—C7176.72 (12)C5—N1—C4—C365.09 (16)
C27—C22—C11—N35.88 (12)C5—N1—C2—C186.26 (15)
C27—C22—C11—C12122.98 (11)C23—C22—C11—N3177.66 (11)
C27—C22—C11—C8110.92 (11)C23—C22—C11—C1260.56 (16)
C27—C22—C23—C242.80 (17)C23—C22—C11—C865.54 (15)
C27—C26—C25—C241.80 (18)C23—C24—C25—C261.20 (19)
C12—C13—C17—C160.50 (18)C26—C27—C22—C11174.51 (11)
C9—O1—C13—C125.36 (16)C26—C27—C22—C232.25 (18)
C9—O1—C13—C17174.80 (10)C26—C27—C28—O21.4 (2)
C9—C8—C11—N3124.17 (12)C26—C27—C28—N3178.35 (12)
C9—C8—C11—C122.06 (15)C14—C12—C13—O1179.16 (11)
C9—C8—C11—C22126.28 (12)C14—C12—C13—C170.67 (17)
C9—C8—C7—C60.38 (18)C14—C12—C11—N354.17 (14)
C9—C10—C5—N1177.28 (11)C14—C12—C11—C2256.81 (15)
C9—C10—C5—C61.68 (17)C14—C12—C11—C8176.88 (10)
C22—C27—C28—O2179.82 (12)C25—C24—C23—C221.12 (18)
C22—C27—C28—N30.05 (13)C29—C30—C35—O31.0 (2)
C22—C27—C26—C250.11 (18)C29—C30—C35—C34178.41 (13)
C8—C9—C10—C50.11 (18)C29—C30—C31—C32179.28 (13)
C8—C7—C6—C51.23 (19)C21—N2—C16—C170.60 (17)
C13—O1—C9—C82.99 (16)C21—N2—C16—C15178.94 (11)
C13—O1—C9—C10178.03 (10)C21—N2—C19—C18102.27 (13)
C13—C12—C11—N3122.54 (12)C30—C35—C34—C330.6 (2)
C13—C12—C11—C22126.47 (12)C30—C31—C32—C331.0 (2)
C13—C12—C11—C80.16 (15)C4—N1—C5—C1020.76 (18)
C13—C12—C14—C150.71 (18)C4—N1—C5—C6160.34 (12)
C13—C17—C16—N2179.25 (11)C4—N1—C2—C181.84 (15)
C13—C17—C16—C150.31 (17)C19—N2—C16—C17175.33 (11)
C17—C16—C15—C140.34 (18)C19—N2—C16—C155.13 (17)
C28—N3—N4—C2926.88 (18)C19—N2—C21—C2096.50 (13)
C28—N3—C11—C12126.76 (11)C2—N1—C5—C10171.43 (11)
C28—N3—C11—C226.13 (12)C2—N1—C5—C67.48 (18)
C28—N3—C11—C8110.73 (11)C2—N1—C4—C3103.26 (13)
C28—C27—C22—C114.02 (13)C35—C30—C31—C320.6 (2)
C28—C27—C22—C23179.22 (10)C35—C34—C33—C320.2 (2)
C28—C27—C26—C25178.12 (12)C31—C30—C35—O3179.64 (12)
C16—N2—C21—C2079.52 (15)C31—C30—C35—C340.2 (2)
C16—N2—C19—C1873.76 (15)C31—C32—C33—C340.6 (2)
C16—C15—C14—C120.57 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C31—H31···O3i0.952.773.4737 (19)131
O3—H3···N41.02 (3)1.72 (2)2.6276 (15)145 (2)
C18—H18A···Cgii0.982.883.8191 (15)161
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z.
 

Acknowledgements

This work would not have succeeded without the funding support from the Office of the Science Research Fund (ScRF), ScAWAKE from the Faculty of Science at Bangkhen, and the Faculty of Science at Si racha campus, Kasetsart University. The Center of Nanotechnology Kasetsart University, Kasetsart University Research and Development Institute (KURDI), National Nanotechnology Center (NANOTEC), Laboratory of Computational and Applied Chemistry (LCAC), the Commission on Higher Education, Ministry of Education [through the National Research University Project of Thailand (NRU) and the National Center of Excellence for Petroleum, Petrochemical and Advanced Materials (NCEPPAM)] are gratefully acknowledged for research facilities.

References

First citationAdhikesavalu, D. N., Mastropaolo, D., Camerman, A. & Camerman, N. (2001). Acta Cryst. C57, 657–659.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBao, X., Liu, D., Jin, Y., Liu, X. & Jiang, W. (2013). RSC Adv. 3, 6783–6786.  Web of Science CrossRef CAS Google Scholar
First citationBiswal, B. & Bag, B. (2013). Org. Biomol. Chem. 11, 4975–4992.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA.  Google Scholar
First citationFun, H.-K., Chinnakali, K., Sivakumar, K., Lu, C.-M., Xiong, R.-G. & You, X.-Z. (1997). Acta Cryst. C53, 1619–1620.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKim, H. N., Lee, M. H., Kim, H. J., Kim, J. S. & Yoon, J. (2008). Chem. Soc. Rev. 37, 1465–1472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlinhom, N., Saengsuwan, N., Sriyab, S., Prompinit, P., Hannongbua, S. & Suramitr, S. (2019). Spectrochim. Acta Part A, 206, 359–366.  Web of Science CrossRef CAS Google Scholar
First citationKvick, Å., Vaughan, G. B. M., Wang, X., Sun, Y. & Long, Y. (2000). Acta Cryst. C56, 1232–1233.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, J. (2005). J. Am. Chem. Soc. 127, 10107–10111.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, J., Wu, D., Yan, X. & Guan, Y. (2013). Talanta, 116, 563–568.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMiengmern, N., Koonwong, A., Sriyab, S., Suramitr, A., Poo-arporn, R. P., Hannongbua, S. & Suramitr, S. (2019). J. Lumin. 210, 493–500.  Web of Science CrossRef CAS Google Scholar
First citationMizuguchi, J. (2008). Acta Cryst. E64, o1238–o1239.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNi, J., Li, Q., Li, B. & Zhang, L. (2013). Sens. Actuators B Chem. 186, 278–285.  Web of Science CrossRef CAS Google Scholar
First citationQu, J. Q., Wang, L. F., Li, Y. Z., Sun, G. C., Zhu, Q. J. & Xia, C. G. (2001). Synth. React. Inorg. Met.-Org. Chem. 31, 1577–1585.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuang, D. T. & Kim, J. S. (2010). Chem. Rev. 110, 6280–6301.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R. & Barone, V. (2006). J. Chem. Phys. 124, 094107.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.  Google Scholar
First citationVenkatraman, R., Sitole, L. & Fronczek, F. R. (2008). Acta Cryst. E64, m199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVeranitisagul, C., Wattanathana, W., Kaewvilai, A., Duangthongyou, T., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o1826.  CSD CrossRef IUCr Journals Google Scholar
First citationWattanathana, W., Nootsuwan, N., Veranitisagul, C., Koonsaeng, N., Suramitr, S. & Laobuthee, A. (2016). J. Mol. Struct. 1109, 201–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationWattanathana, W., Veranitisagul, C., Kaewvilai, A., Laobuthee, A. & Koonsaeng, N. (2012). Acta Cryst. E68, o3050.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds