research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of salen-type ligands 2-[(1E)-({1-(3-chloro­phen­yl)-2-[(E)-(2-hy­dr­oxy­benzyl­­idene)amino]­prop­yl}imino)­meth­yl]phenol and 2-[(1E)-({1-(4-chloro­phen­yl)-2-[(E)-(2-hy­dr­oxy­benzyl­­idene)amino]­prop­yl}imino)­meth­yl]phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: rraajjii2006@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 8 October 2017; accepted 12 November 2017; online 17 November 2017)

The title compounds, C23H21ClN2O2, differ from each other only by the position of the Cl atom on the corresponding benzene ring: meta relative to the central sp3 C atom for (I) and para for (II). In (I), the hy­droxy­phenyl rings are almost parallel, the dihedral angle between the mean planes being 9.2 (2)°, but in (II), the relative position of the ring is different, characterized by a dihedral angle of 48.5 (1)°. Compound (I) features intra­molecular O—H⋯N and inter­molecular C—H⋯O hydrogen bonds, while in (II), intra­molecular O—H⋯N, C—H⋯N hydrogen bonds and weak inter­molecular C—H⋯π inter­actions are observed. Compound (I) was refined as an inversion twin.

1. Chemical context

Salen-type Schiff bases possessing an unsymmetrical vicinal di­amine backbone are promising candidates in synthetic and material science research. Salen ligands and their complexes are widely studied for their extensive applications in various fields, for their luminescent property (Chakraborty et al., 2015[Chakraborty, S., Bhattacharjee, C. R., Mondal, P., Prasad, S. K. & Rao, D. S. S. (2015). Dalton Trans. 44, 7477-7488.]; Chen et al., 2013[Chen, C.-H., Liao, D.-J., Wan, C.-F. & Wu, A.-T. (2013). Analyst, 138, 2527-2530.]), photophysical properties (Cheng et al., 2013[Cheng, J., Wei, K., Ma, X., Zhou, X. & Xiang, H. (2013). J. Phys. Chem. 117, 16552-16563.]), NLO activity (Nayar & Ravikumar, 2014[Nayar, C. R. & Ravikumar, R. (2014). J. Coord. Chem. 67, 1-16.]; Zeyrek, 2013[Zeyrek, T. C. (2013). J. Korean Chem. Soc. 57, 461-471.]) etc. Recent reports on a single-crystal study (Habibi et al., 2007[Habibi, M. H., Sardashti, M. K., Barati, K., Harrington, R. W. & Clegg, W. (2007). Z. Naturforsch. Teil B, 62, 621-624.]), spectroscopic and DFT calculations (de Toledo et al., 2015[Toledo, T. A. de, Pizani, P. S., da Silva, L. E., Teixeira, A. M. & Freire, P. T. (2015). J. Mol. Struct. 1097, 106-111.]) and the utility in asymmetric syntheses (Yang et al., 2011[Yang, X., Liu, X., Shen, K., Fu, Y., Zhang, M., Zhu, C. & Cheng, Y. (2011). Org. Biomol. Chem. 9, 6011-6021.]) of this type of ligand address the novelty of these compounds and speak of the impact of their efficacy. In view of the importance of the title compounds, we have undertaken a single-crystal X-ray diffraction study and the results are presented here.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. Fig. 3[link] shows a superposition of the two compounds except for Cl1 using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); the r.m.s. deviation is 2.3 Å. Compound (I)[link] has two chiral centers with the absolute configuration determined as C8(S), C15(S). The chloro­phenyl group is almost planar with atom Cl1 deviating by 0.013 (1) Å from the ring in (I)[link] whereas in (II)[link] the chlorine atom deviates by 0.079 (1) Å. In (I)[link], hy­droxy atoms O1 and O2 deviate by 0.051 (3) and 0.012 (3) Å, respectively, from the phenyl ring to which they are attached. In (II)[link], hy­droxy atoms O1 and O2 deviate by 0.006 (2) and 0.002 (2) Å, respectively, from the ring. The dihedral angle between these two rings is 9.2 (2)° in (I)[link] and 48.5 (1)° in (II)[link].

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines represent intra­molecular O—H⋯N hydrogen bonds (Table 1[link]).
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines represent intra­molecular O—H⋯N hydrogen bonds (Table 2[link]).
[Figure 3]
Figure 3
Superposition (excluding atom Cl1) of compound (I)[link] (blue) and compound (II)[link] (red).

In compounds (I)[link] and (II)[link], the mol­ecular structure maybe influenced by two intra­molecular O—H⋯N hydrogen bonds (Tables 1[link] and 2[link]). These two hydrogen bonds form R11(6) ring motifs; see Figs. 1[link] and 2[link]. C—H⋯N intra­molecular hydrogen bonds are also observed in compound (II)[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 (1) 1.88 (3) 2.596 (3) 146 (4)
O2—H2⋯N2 0.82 (1) 1.88 (3) 2.588 (3) 143 (4)
C16—H16C⋯O1i 0.96 2.52 3.448 (4) 161
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.83 (1) 1.83 (2) 2.589 (2) 150 (3)
O2—H2⋯N2 0.82 (1) 1.81 (2) 2.557 (3) 150 (3)
C14—H14⋯N1 0.93 2.52 2.845 (3) 101
C5—H5⋯Cgi 0.93 2.76 3.449 (3) 132
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal of (I)[link], C—H⋯O inter­actions link the mol­ecules to form C(9) chains propagating along [010]; see Fig. 4[link] and Table 1[link]. In compound (II)[link], the mol­ecules are connected only by C—H⋯π inter­actions, which form C(11) chains propagating along the ab plane of the unit cell; see Fig. 5[link].

[Figure 4]
Figure 4
The crystal packing of the title compound (I)[link] viewed along the a axis. The C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these inter­actions have been omitted.
[Figure 5]
Figure 5
The crystal packing of the title compound (II)[link] viewed along the a axis. The C—H⋯π inter­actions are shown as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.

4. Synthesis and crystallization

The synthesis of the salen ligand 2-[(1E)-({1-(3-chloro­phen­yl)-2-[(E)-(2-hy­droxy­benzyl­idene)amino]­prop­yl}imino)­meth­yl]phenol was achieved by the condensation of salicyl­aldehyde (0.02 mol) and 1-(3-chloro­phen­yl)propane-1,2-di­amine (0.01 mol) in ethanol (25 ml, 99%). The completion of the reaction was monitored by TLC. The obtained yellow solid was purified by recrystallization from ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol. The above procedure was repeated with 1-(4-chloro­phen­yl)propane-1,2-di­amine (0.01 mol) instead of 1-(3-chloro­phen­yl)propane-1,2-di­amine to synthesise 2-[(1E)-({1-(4-chloro­phen­yl)-2-[(E)-(2-hy­droxy­benzyl­idene)amino]­prop­yl}imino)­meth­yl]phenol.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both compounds, hy­droxy H atoms H1 and H2 were located from difference-Fourier maps. All other H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Pairs of O—H bond distances were restrained to 0.82 (1) Å. Compound (I)[link] was refined as an inversion twin.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C23H21ClN2O2 C23H21ClN2O2
Mr 392.87 392.87
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 12.8126 (7), 7.0224 (3), 12.8169 (6) 6.7923 (2), 20.8261 (8), 14.1744 (6)
β (°) 117.207 (3) 92.435 (2)
V3) 1025.61 (9) 2003.26 (13)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.21 0.21
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.921, 0.959 0.927, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 15137, 4892, 2738 42044, 4182, 2599
Rint 0.039 0.044
(sin θ/λ)max−1) 0.679 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.087, 0.98 0.047, 0.140, 1.08
No. of reflections 4892 4182
No. of parameters 263 262
No. of restraints 3 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.21 0.30, −0.29
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.27 (8)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-[(1E)-({1-(3-Chlorophenyl)-2-[(E)-(2-hydroxybenzylidene)amino]propyl}imino)methyl]phenol (I) top
Crystal data top
C23H21ClN2O2F(000) = 412
Mr = 392.87Dx = 1.272 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.8126 (7) ÅCell parameters from 4564 reflections
b = 7.0224 (3) Åθ = 3.1–28.7°
c = 12.8169 (6) ŵ = 0.21 mm1
β = 117.207 (3)°T = 296 K
V = 1025.61 (9) Å3Block, yellow
Z = 20.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4892 independent reflections
Radiation source: fine-focus sealed tube2738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scanθmax = 28.9°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.921, Tmax = 0.959k = 99
15137 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.16 e Å3
4892 reflectionsΔρmin = 0.21 e Å3
263 parametersAbsolute structure: Refined as an inversion twin
3 restraintsAbsolute structure parameter: 0.27 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12595 (9)0.08259 (13)0.75791 (8)0.0764 (3)
O10.2698 (2)0.1099 (3)0.4005 (2)0.0608 (6)
H10.267 (4)0.021 (4)0.440 (3)0.093 (15)*
O20.5035 (2)0.0707 (4)0.7066 (2)0.0756 (7)
H20.460 (3)0.018 (4)0.671 (3)0.094 (15)*
N10.2403 (2)0.2414 (3)0.4445 (2)0.0392 (6)
N20.4325 (2)0.2792 (3)0.6800 (2)0.0447 (6)
C10.2232 (3)0.0598 (5)0.2872 (3)0.0484 (8)
C20.2161 (3)0.1952 (6)0.2053 (4)0.0696 (11)
H2A0.24580.31700.22950.084*
C30.1651 (4)0.1487 (7)0.0886 (4)0.0826 (13)
H30.15990.24020.03400.099*
C40.1219 (4)0.0292 (8)0.0510 (4)0.0901 (14)
H40.08590.05780.02860.108*
C50.1319 (3)0.1664 (6)0.1320 (3)0.0696 (10)
H50.10400.28870.10650.083*
C60.1828 (3)0.1248 (4)0.2505 (3)0.0457 (8)
C70.1946 (2)0.2720 (4)0.3347 (3)0.0425 (7)
H70.16760.39390.30710.051*
C80.2472 (2)0.3981 (4)0.5223 (2)0.0400 (7)
H80.21300.51110.47370.048*
C90.1745 (2)0.3515 (4)0.5843 (2)0.0376 (7)
C100.1000 (3)0.4861 (4)0.5917 (3)0.0472 (8)
H100.09410.60510.55760.057*
C110.0340 (3)0.4461 (5)0.6495 (3)0.0586 (9)
H110.01580.53860.65370.070*
C120.0411 (3)0.2721 (5)0.7004 (3)0.0539 (8)
H120.00320.24530.73930.065*
C130.1150 (3)0.1387 (4)0.6927 (2)0.0444 (8)
C140.1816 (2)0.1744 (4)0.6362 (2)0.0413 (7)
H140.23120.08090.63250.050*
C150.3754 (2)0.4435 (4)0.6076 (3)0.0437 (7)
H150.37650.54780.65890.052*
C160.4443 (3)0.5057 (4)0.5432 (3)0.0568 (9)
H16A0.45030.40100.49810.085*
H16B0.52150.54540.59910.085*
H16C0.40450.60980.49180.085*
C170.4838 (3)0.2952 (4)0.7907 (3)0.0495 (8)
H170.48030.41150.82370.059*
C180.5477 (3)0.1402 (5)0.8680 (3)0.0492 (8)
C190.6041 (3)0.1668 (6)0.9894 (3)0.0740 (11)
H190.59780.28281.02110.089*
C200.6697 (4)0.0201 (8)1.0629 (4)0.0911 (14)
H200.70920.03851.14370.109*
C210.6755 (4)0.1514 (8)1.0155 (5)0.0927 (14)
H210.71820.25001.06520.111*
C220.6206 (3)0.1822 (6)0.8973 (4)0.0805 (12)
H220.62650.29980.86710.097*
C230.5557 (3)0.0364 (5)0.8225 (3)0.0567 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1129 (8)0.0564 (5)0.0816 (7)0.0087 (6)0.0632 (6)0.0050 (5)
O10.0708 (16)0.0535 (15)0.0610 (17)0.0124 (12)0.0325 (14)0.0025 (13)
O20.096 (2)0.0583 (16)0.0555 (17)0.0182 (16)0.0201 (15)0.0044 (15)
N10.0428 (15)0.0390 (14)0.0373 (16)0.0061 (11)0.0197 (13)0.0049 (11)
N20.0425 (15)0.0451 (15)0.0438 (18)0.0026 (12)0.0173 (14)0.0009 (13)
C10.0370 (18)0.064 (2)0.050 (2)0.0029 (17)0.0250 (17)0.0075 (19)
C20.062 (2)0.074 (2)0.086 (3)0.009 (2)0.046 (2)0.021 (2)
C30.078 (3)0.109 (4)0.075 (3)0.029 (3)0.048 (3)0.045 (3)
C40.092 (3)0.130 (4)0.047 (3)0.020 (3)0.030 (3)0.019 (3)
C50.071 (3)0.091 (3)0.044 (2)0.001 (2)0.023 (2)0.004 (2)
C60.0387 (19)0.063 (2)0.038 (2)0.0010 (16)0.0197 (16)0.0002 (17)
C70.0394 (18)0.0428 (17)0.047 (2)0.0040 (15)0.0214 (16)0.0106 (16)
C80.0457 (18)0.0336 (15)0.0426 (17)0.0089 (14)0.0220 (15)0.0074 (15)
C90.0373 (17)0.0402 (17)0.0320 (16)0.0044 (13)0.0129 (15)0.0016 (13)
C100.049 (2)0.0468 (19)0.047 (2)0.0117 (14)0.0228 (17)0.0036 (14)
C110.053 (2)0.065 (2)0.064 (2)0.0155 (17)0.0332 (18)0.0042 (19)
C120.051 (2)0.067 (2)0.053 (2)0.0044 (19)0.0318 (18)0.0093 (18)
C130.051 (2)0.0461 (17)0.0346 (18)0.0079 (16)0.0185 (16)0.0057 (15)
C140.0426 (19)0.0418 (17)0.0412 (18)0.0036 (14)0.0206 (16)0.0035 (14)
C150.0427 (19)0.0355 (17)0.0521 (19)0.0031 (15)0.0211 (16)0.0009 (15)
C160.055 (2)0.0485 (18)0.072 (3)0.0040 (16)0.034 (2)0.0124 (17)
C170.0440 (19)0.056 (2)0.052 (2)0.0053 (16)0.0257 (18)0.0095 (18)
C180.0395 (19)0.068 (2)0.038 (2)0.0039 (17)0.0165 (17)0.0065 (18)
C190.062 (3)0.108 (3)0.050 (2)0.015 (2)0.025 (2)0.002 (2)
C200.068 (3)0.142 (4)0.046 (3)0.010 (3)0.011 (2)0.027 (3)
C210.064 (3)0.115 (4)0.079 (4)0.002 (3)0.016 (3)0.040 (3)
C220.067 (3)0.082 (3)0.077 (3)0.010 (2)0.020 (2)0.031 (2)
C230.047 (2)0.066 (3)0.051 (2)0.0002 (17)0.0165 (18)0.0131 (19)
Geometric parameters (Å, º) top
Cl1—C131.740 (3)C10—C111.384 (4)
O1—C11.341 (3)C10—H100.9300
O1—H10.820 (13)C11—C121.369 (4)
O2—C231.343 (4)C11—H110.9300
O2—H20.823 (13)C12—C131.368 (4)
N1—C71.271 (3)C12—H120.9300
N1—C81.461 (3)C13—C141.371 (4)
N2—C171.266 (4)C14—H140.9300
N2—C151.452 (4)C15—C161.522 (4)
C1—C21.388 (4)C15—H150.9800
C1—C61.395 (4)C16—H16A0.9600
C2—C31.370 (6)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C3—C41.362 (6)C17—C181.448 (4)
C3—H30.9300C17—H170.9300
C4—C51.379 (5)C18—C231.394 (4)
C4—H40.9300C18—C191.396 (4)
C5—C61.383 (4)C19—C201.389 (6)
C5—H50.9300C19—H190.9300
C6—C71.452 (4)C20—C211.367 (6)
C7—H70.9300C20—H200.9300
C8—C91.510 (4)C21—C221.364 (6)
C8—C151.534 (4)C21—H210.9300
C8—H80.9800C22—C231.389 (4)
C9—C101.377 (4)C22—H220.9300
C9—C141.394 (4)
C1—O1—H1111 (3)C13—C12—H12120.9
C23—O2—H2110 (3)C11—C12—H12120.9
C7—N1—C8118.8 (2)C12—C13—C14122.1 (3)
C17—N2—C15119.8 (2)C12—C13—Cl1118.9 (2)
O1—C1—C2118.8 (3)C14—C13—Cl1119.0 (2)
O1—C1—C6121.5 (3)C13—C14—C9119.7 (3)
C2—C1—C6119.7 (3)C13—C14—H14120.2
C3—C2—C1119.7 (4)C9—C14—H14120.2
C3—C2—H2A120.1N2—C15—C16109.1 (2)
C1—C2—H2A120.1N2—C15—C8110.7 (2)
C4—C3—C2121.3 (4)C16—C15—C8111.8 (2)
C4—C3—H3119.4N2—C15—H15108.4
C2—C3—H3119.4C16—C15—H15108.4
C3—C4—C5119.5 (4)C8—C15—H15108.4
C3—C4—H4120.3C15—C16—H16A109.5
C5—C4—H4120.3C15—C16—H16B109.5
C4—C5—C6120.9 (4)H16A—C16—H16B109.5
C4—C5—H5119.5C15—C16—H16C109.5
C6—C5—H5119.5H16A—C16—H16C109.5
C5—C6—C1118.9 (3)H16B—C16—H16C109.5
C5—C6—C7120.2 (3)N2—C17—C18122.8 (3)
C1—C6—C7121.0 (3)N2—C17—H17118.6
N1—C7—C6122.8 (3)C18—C17—H17118.6
N1—C7—H7118.6C23—C18—C19119.0 (3)
C6—C7—H7118.6C23—C18—C17120.6 (3)
N1—C8—C9109.7 (2)C19—C18—C17120.3 (3)
N1—C8—C15110.7 (2)C20—C19—C18120.1 (4)
C9—C8—C15112.8 (2)C20—C19—H19120.0
N1—C8—H8107.8C18—C19—H19120.0
C9—C8—H8107.8C21—C20—C19119.4 (4)
C15—C8—H8107.8C21—C20—H20120.3
C10—C9—C14118.4 (3)C19—C20—H20120.3
C10—C9—C8120.1 (2)C22—C21—C20121.9 (4)
C14—C9—C8121.6 (2)C22—C21—H21119.1
C9—C10—C11120.7 (3)C20—C21—H21119.1
C9—C10—H10119.7C21—C22—C23119.4 (4)
C11—C10—H10119.7C21—C22—H22120.3
C12—C11—C10120.9 (3)C23—C22—H22120.3
C12—C11—H11119.6O2—C23—C22118.0 (3)
C10—C11—H11119.6O2—C23—C18121.8 (3)
C13—C12—C11118.3 (3)C22—C23—C18120.1 (4)
O1—C1—C2—C3177.8 (3)C11—C12—C13—Cl1179.5 (2)
C6—C1—C2—C32.6 (5)C12—C13—C14—C90.1 (4)
C1—C2—C3—C40.6 (6)Cl1—C13—C14—C9179.5 (2)
C2—C3—C4—C51.5 (7)C10—C9—C14—C130.0 (4)
C3—C4—C5—C61.5 (6)C8—C9—C14—C13179.3 (3)
C4—C5—C6—C10.6 (5)C17—N2—C15—C16110.4 (3)
C4—C5—C6—C7178.8 (3)C17—N2—C15—C8126.2 (3)
O1—C1—C6—C5177.8 (3)N1—C8—C15—N260.4 (3)
C2—C1—C6—C52.6 (4)C9—C8—C15—N262.9 (3)
O1—C1—C6—C72.8 (4)N1—C8—C15—C1661.3 (3)
C2—C1—C6—C7176.8 (3)C9—C8—C15—C16175.3 (2)
C8—N1—C7—C6179.3 (2)C15—N2—C17—C18176.7 (2)
C5—C6—C7—N1179.7 (3)N2—C17—C18—C230.3 (5)
C1—C6—C7—N10.9 (4)N2—C17—C18—C19179.0 (3)
C7—N1—C8—C9117.0 (3)C23—C18—C19—C201.7 (5)
C7—N1—C8—C15117.9 (3)C17—C18—C19—C20177.1 (3)
N1—C8—C9—C10134.2 (3)C18—C19—C20—C211.8 (6)
C15—C8—C9—C10101.9 (3)C19—C20—C21—C221.3 (7)
N1—C8—C9—C1446.5 (3)C20—C21—C22—C230.7 (6)
C15—C8—C9—C1477.4 (3)C21—C22—C23—O2179.4 (3)
C14—C9—C10—C110.0 (5)C21—C22—C23—C180.5 (5)
C8—C9—C10—C11179.2 (3)C19—C18—C23—O2179.9 (3)
C9—C10—C11—C120.0 (5)C17—C18—C23—O21.1 (5)
C10—C11—C12—C130.1 (5)C19—C18—C23—C221.0 (5)
C11—C12—C13—C140.2 (5)C17—C18—C23—C22177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (1)1.88 (3)2.596 (3)146 (4)
O2—H2···N20.82 (1)1.88 (3)2.588 (3)143 (4)
C16—H16C···O1i0.962.523.448 (4)161
Symmetry code: (i) x, y+1, z.
2-[(1E)-({1-(4-Chlorophenyl)-2-[(E)-(2-hydroxybenzylidene)amino]propyl}imino)methyl]phenol (II) top
Crystal data top
C23H21ClN2O2F(000) = 824
Mr = 392.87Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.7923 (2) ÅCell parameters from 9979 reflections
b = 20.8261 (8) Åθ = 2.4–23.5°
c = 14.1744 (6) ŵ = 0.21 mm1
β = 92.435 (2)°T = 296 K
V = 2003.26 (13) Å3Block, brown
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4182 independent reflections
Radiation source: fine-focus sealed tube2599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and φ scanθmax = 26.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.927, Tmax = 0.959k = 2626
42044 measured reflectionsl = 1717
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.8955P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4182 reflectionsΔρmax = 0.30 e Å3
262 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78279 (15)0.12547 (4)0.58629 (6)0.1006 (3)
O10.2304 (3)0.08496 (8)0.15527 (14)0.0637 (5)
H10.334 (3)0.0660 (13)0.171 (2)0.087 (10)*
O20.2661 (3)0.08746 (11)0.18436 (16)0.0770 (6)
H20.370 (3)0.0672 (14)0.182 (2)0.098 (12)*
N10.5917 (2)0.06874 (9)0.21615 (13)0.0467 (5)
N20.6144 (2)0.05789 (9)0.13809 (13)0.0462 (4)
C10.2600 (3)0.14842 (11)0.16815 (16)0.0482 (5)
C20.1094 (4)0.19034 (13)0.14300 (19)0.0622 (7)
H2A0.00980.17470.11780.075*
C30.1357 (5)0.25512 (14)0.1552 (2)0.0707 (8)
H30.03320.28310.13910.085*
C40.3108 (5)0.27897 (13)0.1909 (2)0.0700 (8)
H40.32750.32300.19860.084*
C50.4615 (4)0.23786 (12)0.21510 (18)0.0614 (7)
H50.58050.25430.23930.074*
C60.4400 (3)0.17188 (10)0.20426 (15)0.0464 (5)
C70.6050 (3)0.12931 (11)0.22487 (15)0.0478 (5)
H70.72520.14700.24520.057*
C80.7683 (3)0.02938 (10)0.22775 (15)0.0452 (5)
H80.88340.05780.23140.054*
C90.7673 (3)0.01045 (11)0.31730 (15)0.0463 (5)
C100.9417 (4)0.03504 (14)0.35463 (18)0.0633 (7)
H101.05770.02740.32390.076*
C110.9481 (4)0.07086 (14)0.4368 (2)0.0696 (7)
H111.06740.08660.46170.084*
C120.7775 (4)0.08287 (12)0.48094 (18)0.0632 (7)
C130.6031 (4)0.06095 (13)0.44453 (19)0.0651 (7)
H130.48700.07040.47420.078*
C140.5981 (4)0.02444 (13)0.36300 (18)0.0595 (6)
H140.47790.00900.33860.071*
C150.7810 (3)0.01313 (11)0.13977 (15)0.0454 (5)
H150.90410.03770.14420.054*
C160.7758 (4)0.02621 (12)0.04999 (17)0.0566 (6)
H16A0.88080.05710.05310.085*
H16B0.79160.00160.00310.085*
H16C0.65170.04810.04300.085*
C170.6244 (3)0.11048 (11)0.09408 (15)0.0459 (5)
H170.73950.12070.06420.055*
C180.4608 (3)0.15533 (11)0.08902 (16)0.0481 (5)
C190.4742 (4)0.21199 (13)0.03970 (19)0.0697 (7)
H190.58900.22130.00900.084*
C200.3212 (6)0.25477 (16)0.0351 (3)0.0959 (11)
H200.33090.29270.00110.115*
C210.1538 (6)0.2408 (2)0.0815 (3)0.1000 (13)
H210.05010.27000.07890.120*
C220.1349 (4)0.18543 (17)0.1312 (2)0.0796 (9)
H220.01970.17710.16220.096*
C230.2875 (3)0.14176 (13)0.13520 (18)0.0582 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1458 (8)0.0881 (6)0.0693 (5)0.0325 (5)0.0213 (5)0.0277 (4)
O10.0522 (10)0.0485 (11)0.0897 (14)0.0042 (9)0.0063 (9)0.0005 (9)
O20.0553 (12)0.0837 (15)0.0935 (15)0.0041 (11)0.0232 (10)0.0027 (12)
N10.0449 (10)0.0437 (11)0.0516 (11)0.0004 (8)0.0032 (8)0.0005 (9)
N20.0425 (10)0.0489 (11)0.0473 (11)0.0010 (8)0.0039 (8)0.0023 (9)
C10.0546 (13)0.0437 (13)0.0466 (13)0.0012 (11)0.0074 (10)0.0004 (10)
C20.0591 (15)0.0630 (17)0.0646 (16)0.0075 (13)0.0039 (12)0.0038 (13)
C30.085 (2)0.0631 (18)0.0637 (17)0.0232 (15)0.0040 (15)0.0013 (14)
C40.103 (2)0.0419 (14)0.0641 (17)0.0084 (15)0.0036 (15)0.0040 (12)
C50.0808 (18)0.0473 (15)0.0553 (15)0.0065 (13)0.0069 (13)0.0069 (12)
C60.0596 (14)0.0414 (13)0.0384 (12)0.0007 (10)0.0032 (10)0.0018 (9)
C70.0522 (13)0.0484 (14)0.0424 (12)0.0061 (11)0.0011 (10)0.0022 (10)
C80.0376 (11)0.0473 (13)0.0507 (13)0.0025 (9)0.0020 (9)0.0011 (10)
C90.0475 (12)0.0484 (13)0.0430 (12)0.0037 (10)0.0009 (10)0.0056 (10)
C100.0507 (14)0.0825 (19)0.0568 (16)0.0062 (13)0.0037 (11)0.0040 (14)
C110.0683 (17)0.079 (2)0.0609 (17)0.0178 (15)0.0056 (13)0.0072 (15)
C120.090 (2)0.0511 (15)0.0490 (15)0.0159 (14)0.0090 (14)0.0003 (12)
C130.0709 (17)0.0623 (17)0.0638 (17)0.0060 (13)0.0219 (14)0.0050 (13)
C140.0521 (14)0.0703 (17)0.0568 (15)0.0080 (12)0.0093 (11)0.0071 (13)
C150.0375 (11)0.0535 (13)0.0454 (13)0.0009 (10)0.0049 (9)0.0014 (10)
C160.0570 (14)0.0645 (16)0.0486 (14)0.0080 (12)0.0064 (11)0.0025 (12)
C170.0461 (12)0.0503 (14)0.0415 (12)0.0061 (10)0.0048 (9)0.0024 (10)
C180.0539 (13)0.0473 (13)0.0427 (13)0.0021 (11)0.0044 (10)0.0062 (10)
C190.088 (2)0.0596 (17)0.0606 (17)0.0096 (15)0.0041 (14)0.0024 (14)
C200.125 (3)0.064 (2)0.096 (3)0.025 (2)0.025 (2)0.0008 (18)
C210.092 (3)0.092 (3)0.112 (3)0.046 (2)0.037 (2)0.037 (2)
C220.0538 (16)0.090 (2)0.094 (2)0.0128 (16)0.0105 (14)0.035 (2)
C230.0504 (14)0.0625 (16)0.0610 (16)0.0018 (12)0.0041 (11)0.0171 (13)
Geometric parameters (Å, º) top
Cl1—C121.736 (3)C10—C111.383 (4)
O1—C11.348 (3)C10—H100.9300
O1—H10.833 (10)C11—C121.363 (4)
O2—C231.339 (3)C11—H110.9300
O2—H20.822 (10)C12—C131.351 (4)
N1—C71.270 (3)C13—C141.383 (4)
N1—C81.456 (3)C13—H130.9300
N2—C171.264 (3)C14—H140.9300
N2—C151.465 (3)C15—C161.513 (3)
C1—C21.380 (3)C15—H150.9800
C1—C61.394 (3)C16—H16A0.9600
C2—C31.371 (4)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C3—C41.366 (4)C17—C181.451 (3)
C3—H30.9300C17—H170.9300
C4—C51.367 (4)C18—C191.376 (3)
C4—H40.9300C18—C231.400 (3)
C5—C61.389 (3)C19—C201.368 (4)
C5—H50.9300C19—H190.9300
C6—C71.449 (3)C20—C211.368 (5)
C7—H70.9300C20—H200.9300
C8—C91.516 (3)C21—C221.361 (5)
C8—C151.535 (3)C21—H210.9300
C8—H80.9800C22—C231.378 (4)
C9—C141.374 (3)C22—H220.9300
C9—C101.375 (3)
C1—O1—H1108 (2)C13—C12—Cl1119.1 (2)
C23—O2—H2108 (2)C11—C12—Cl1120.1 (2)
C7—N1—C8119.55 (18)C12—C13—C14119.7 (2)
C17—N2—C15120.13 (18)C12—C13—H13120.2
O1—C1—C2118.7 (2)C14—C13—H13120.2
O1—C1—C6121.1 (2)C9—C14—C13121.3 (2)
C2—C1—C6120.1 (2)C9—C14—H14119.4
C3—C2—C1119.9 (3)C13—C14—H14119.4
C3—C2—H2A120.1N2—C15—C16109.91 (18)
C1—C2—H2A120.1N2—C15—C8108.07 (17)
C4—C3—C2120.8 (3)C16—C15—C8111.79 (19)
C4—C3—H3119.6N2—C15—H15109.0
C2—C3—H3119.6C16—C15—H15109.0
C3—C4—C5119.7 (3)C8—C15—H15109.0
C3—C4—H4120.1C15—C16—H16A109.5
C5—C4—H4120.1C15—C16—H16B109.5
C4—C5—C6121.2 (2)H16A—C16—H16B109.5
C4—C5—H5119.4C15—C16—H16C109.5
C6—C5—H5119.4H16A—C16—H16C109.5
C5—C6—C1118.3 (2)H16B—C16—H16C109.5
C5—C6—C7120.4 (2)N2—C17—C18121.7 (2)
C1—C6—C7121.2 (2)N2—C17—H17119.2
N1—C7—C6122.5 (2)C18—C17—H17119.2
N1—C7—H7118.8C19—C18—C23119.0 (2)
C6—C7—H7118.8C19—C18—C17120.6 (2)
N1—C8—C9111.71 (17)C23—C18—C17120.3 (2)
N1—C8—C15107.90 (17)C20—C19—C18121.1 (3)
C9—C8—C15111.53 (18)C20—C19—H19119.5
N1—C8—H8108.5C18—C19—H19119.5
C9—C8—H8108.5C21—C20—C19118.9 (3)
C15—C8—H8108.5C21—C20—H20120.5
C14—C9—C10117.6 (2)C19—C20—H20120.5
C14—C9—C8122.9 (2)C22—C21—C20121.8 (3)
C10—C9—C8119.5 (2)C22—C21—H21119.1
C9—C10—C11121.4 (2)C20—C21—H21119.1
C9—C10—H10119.3C21—C22—C23119.6 (3)
C11—C10—H10119.3C21—C22—H22120.2
C12—C11—C10119.3 (2)C23—C22—H22120.2
C12—C11—H11120.4O2—C23—C22118.7 (3)
C10—C11—H11120.4O2—C23—C18121.7 (2)
C13—C12—C11120.8 (2)C22—C23—C18119.6 (3)
O1—C1—C2—C3179.9 (2)C11—C12—C13—C141.8 (4)
C6—C1—C2—C31.2 (4)Cl1—C12—C13—C14177.0 (2)
C1—C2—C3—C41.0 (4)C10—C9—C14—C131.1 (4)
C2—C3—C4—C50.3 (4)C8—C9—C14—C13180.0 (2)
C3—C4—C5—C60.1 (4)C12—C13—C14—C90.7 (4)
C4—C5—C6—C10.2 (4)C17—N2—C15—C1681.7 (2)
C4—C5—C6—C7176.2 (2)C17—N2—C15—C8156.0 (2)
O1—C1—C6—C5179.5 (2)N1—C8—C15—N265.8 (2)
C2—C1—C6—C50.8 (3)C9—C8—C15—N257.2 (2)
O1—C1—C6—C73.1 (3)N1—C8—C15—C1655.3 (2)
C2—C1—C6—C7175.6 (2)C9—C8—C15—C16178.30 (17)
C8—N1—C7—C6173.12 (19)C15—N2—C17—C18178.55 (19)
C5—C6—C7—N1179.8 (2)N2—C17—C18—C19179.2 (2)
C1—C6—C7—N13.9 (3)N2—C17—C18—C231.5 (3)
C7—N1—C8—C9110.4 (2)C23—C18—C19—C200.2 (4)
C7—N1—C8—C15126.6 (2)C17—C18—C19—C20179.5 (3)
N1—C8—C9—C1420.7 (3)C18—C19—C20—C210.7 (5)
C15—C8—C9—C14100.2 (2)C19—C20—C21—C220.6 (5)
N1—C8—C9—C10160.5 (2)C20—C21—C22—C230.2 (5)
C15—C8—C9—C1078.6 (3)C21—C22—C23—O2179.9 (3)
C14—C9—C10—C112.0 (4)C21—C22—C23—C180.7 (4)
C8—C9—C10—C11179.1 (2)C19—C18—C23—O2179.9 (2)
C9—C10—C11—C121.0 (4)C17—C18—C23—O20.6 (3)
C10—C11—C12—C130.9 (4)C19—C18—C23—C220.6 (4)
C10—C11—C12—Cl1177.9 (2)C17—C18—C23—C22178.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (1)1.83 (2)2.589 (2)150 (3)
O2—H2···N20.82 (1)1.81 (2)2.557 (3)150 (3)
C14—H14···N10.932.522.845 (3)101
C5—H5···Cgi0.932.763.449 (3)132
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

Acknowledgements

The authors thank the SAIF, IIT-Madras, for support during the single-crystal data collection and gratefully acknowledge the UGC for financial support under the MRP scheme.

References

First citationBruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChakraborty, S., Bhattacharjee, C. R., Mondal, P., Prasad, S. K. & Rao, D. S. S. (2015). Dalton Trans. 44, 7477–7488.  Web of Science CrossRef CAS PubMed
First citationChen, C.-H., Liao, D.-J., Wan, C.-F. & Wu, A.-T. (2013). Analyst, 138, 2527–2530.  Web of Science CrossRef CAS PubMed
First citationCheng, J., Wei, K., Ma, X., Zhou, X. & Xiang, H. (2013). J. Phys. Chem. 117, 16552–16563.  CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS
First citationHabibi, M. H., Sardashti, M. K., Barati, K., Harrington, R. W. & Clegg, W. (2007). Z. Naturforsch. Teil B, 62, 621–624.  CAS
First citationNayar, C. R. & Ravikumar, R. (2014). J. Coord. Chem. 67, 1–16.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationToledo, T. A. de, Pizani, P. S., da Silva, L. E., Teixeira, A. M. & Freire, P. T. (2015). J. Mol. Struct. 1097, 106–111.
First citationYang, X., Liu, X., Shen, K., Fu, Y., Zhang, M., Zhu, C. & Cheng, Y. (2011). Org. Biomol. Chem. 9, 6011–6021.  Web of Science CrossRef CAS PubMed
First citationZeyrek, T. C. (2013). J. Korean Chem. Soc. 57, 461–471.  CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds