organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (Z)-3-(4-methyl­anilino)-2-[(4-methyl­phen­yl)carbamo­yl]prop-2-enoate

aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 18 October 2012; accepted 22 October 2012; online 27 October 2012)

The title compound, C20H22N2O3, is a secondary amine featuring an amide and an ester functionality in connection with a Michael system. The conformation about the C=C bond is E. Intra­molecular N—H⋯O hydrogen bonds occur. In the crystal, C—H⋯O contacts connect the mol­ecules into chains along the b-axis direction.

Related literature

For general information about the synthetic and industrial importance of aniline and its derivatives, see: Berry & Royd (1984[Berry, D. F. & Royd, S. A. (1984). Soil Sci. Soc. Am. J. 48, 565-569.]); Garudachari et al. (2012[Garudachari, B., Satyanarayana, M. N., Thippeswamy, B., Shivakumar, C. K., Shivananda, K. N., Hegde, G. & Isloor, A. M. (2012). Eur. J. Med. Chem. 54, 900-906.]); Sridharan et al. (2006[Sridharan, V., Perumal, S., Avendano, C. & Menendez, J. C. (2006). Synlett, pp. 91-95.]); Kasthuri et al. (2008[Kasthuri, J., Santhanalakshmi, J. & Rajendiran, N. (2008). J. Iran. Chem. Soc. 3, 436-444.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O3

  • Mr = 338.40

  • Monoclinic, C 2/c

  • a = 18.8170 (4) Å

  • b = 11.9752 (3) Å

  • c = 15.6043 (4) Å

  • β = 91.470 (1)°

  • V = 3515.07 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.42 × 0.26 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.984

  • 16569 measured reflections

  • 4353 independent reflections

  • 3411 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.147

  • S = 1.05

  • 4353 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O1i 0.95 2.68 3.620 (2) 170
C25—H25⋯O2ii 0.95 2.70 3.4685 (19) 139
N1—H1⋯O1 0.97 (2) 1.85 (2) 2.6383 (17) 135.9 (18)
N2—H2⋯O2 0.88 (2) 1.92 (2) 2.6713 (18) 143.0 (19)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The study of aniline derivatives is important due to the presence of amines in natural products and nucleic acids (Berry & Royd, 1984). Aniline compounds find widespread applications in the field of synthetic chemistry such as the synthesis of quinolines and indoles (Garudachari et al., 2012; Sridharan et al., 2006). Aniline derivatives are also widely used in many industries such as in the production of dyes and agrochemicals (Kasthuri et al., 2008). Keeping in mind the importance of aniline derivatives, the title compound was synthesized to study its crystal structure.

The molecule can – simultaneously – be regarded as a secondary amide, an enamine, an ester as well as featuring a Michael system. The C=C bond is (E) configured. The least-squares planes defined by the respective carbon atoms of the phenyl rings intersect at an angle of 49.57 (8) °. The central part of the molecule, including the ethyl group, is essentially planar (r.m.s. of the least-squares plane defined by all the non-hydrogen atoms of the respective part of this molecule = 0.0569 Å) with the oxygen atom of the ethoxy group deviating most from this plane (0.095 (1) Å) (Fig. 1).

In the crystal, intramolecular N–H···O bonds involving all secondary amine groups and double bonded oxygen atoms are observed. In addition, intermolecular C–H···O contacts whose range falls slightly below the sum of van-der-Waals radii of the atoms participating are present. The latter contacts are supported by hydrogen atoms on the phenyl group that is bonded to the amide-type nitrogen atom and exclusively have ketonic oxygen atoms as acceptors. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is S(6)S(6)R22(14)R22(18) on the unary level. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the molecules are connected to chains along the crystallographic b axis. The shortest intercentroid distance between two aromatic systems was measured at 4.5754 (9) Å and is observed between the two different aromatic moieties in neighbouring molecules (Fig 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For general information about the synthetic and industrial importance of aniline and its derivatives, see: Berry & Royd (1984); Garudachari et al. (2012); Sridharan et al. (2006); Kasthuri et al. (2008). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

A mixture of diethyl-{[(4-methylphenyl)amino]methylidene}propanedioate (1.0 g, 0.0036 mol) and 4-methylaniline (0.19 g, 0.0018 mol) in dowtherm (10 ml) was stirred at 150 °C for 2 h. The reaction mixture was then cooled to 25 °C and stirred in n-hexane (20 ml) for 10 min. The solid product obtained was filtered, dried and further purified by column chromatography using petrol ether and ethyl acetate (v:v = 5:5) as the eluent to get a white solid. Crystals were grown by slow evaporation of a dilute ethanol solution at room temperature, yield: 0.52 g (42.6%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å for aromatic and vinylic carbon atoms, C—H = 0.99 Å for the methylene group, and C—H = 0.98 Å for the methyl groups) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 or 1.5Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density [HFIX 137 in the SHELX program suite (Sheldrick, 2008), with Uiso(H) set to 1.5Ueq(C)]. Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 0 - 1]. Intermolecular C–H···O contacts are depicted with green dashed lines, intramolecular N–H···O hydrogen bonds are depicted with blue dashed lines. Symmetry operators: (i) -x + 1/2, -y + 3/2, -z; (ii) -x + 1/2, -y + 1/2, -z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).
Ethyl (Z)-3-(4-methylanilino)-2-[(4-methylphenyl)carbamoyl]prop-2-enoate top
Crystal data top
C20H22N2O3F(000) = 1440
Mr = 338.40Dx = 1.279 Mg m3
Monoclinic, C2/cMelting point = 438–440 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.8170 (4) ÅCell parameters from 7492 reflections
b = 11.9752 (3) Åθ = 2.4–28.3°
c = 15.6043 (4) ŵ = 0.09 mm1
β = 91.470 (1)°T = 200 K
V = 3515.07 (15) Å3Cubic, white
Z = 80.42 × 0.26 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
4353 independent reflections
Radiation source: fine-focus sealed tube3411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1825
Tmin = 0.965, Tmax = 0.984k = 1511
16569 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0721P)2 + 2.7716P]
where P = (Fo2 + 2Fc2)/3
4353 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H22N2O3V = 3515.07 (15) Å3
Mr = 338.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.8170 (4) ŵ = 0.09 mm1
b = 11.9752 (3) ÅT = 200 K
c = 15.6043 (4) Å0.42 × 0.26 × 0.19 mm
β = 91.470 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4353 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3411 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.984Rint = 0.022
16569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.56 e Å3
4353 reflectionsΔρmin = 0.22 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10013 (6)0.36356 (9)0.05742 (8)0.0390 (3)
O20.06034 (7)0.70809 (10)0.07895 (9)0.0432 (3)
O30.03953 (6)0.66632 (10)0.14650 (8)0.0396 (3)
N10.02327 (7)0.33906 (11)0.13174 (9)0.0328 (3)
N20.14011 (7)0.53822 (11)0.02606 (9)0.0311 (3)
C10.25933 (9)0.06696 (16)0.22528 (12)0.0427 (4)
H1A0.30260.09760.19800.064*
H1B0.26450.06580.28760.064*
H1C0.25160.00920.20460.064*
C20.02178 (8)0.44917 (13)0.13478 (10)0.0312 (3)
H2A0.06060.48540.16080.037*
C30.03155 (8)0.51666 (13)0.10328 (9)0.0297 (3)
C40.09288 (8)0.46684 (13)0.06104 (9)0.0302 (3)
C50.02073 (8)0.63730 (14)0.10765 (10)0.0326 (3)
C60.05772 (10)0.78362 (15)0.14399 (13)0.0469 (4)
H6A0.06220.80990.08390.056*
H6B0.02050.82830.17410.056*
C70.12693 (12)0.79542 (19)0.18756 (17)0.0635 (6)
H7A0.14020.87450.18980.095*
H7B0.12240.76580.24600.095*
H7C0.16370.75370.15560.095*
C80.41549 (10)0.47429 (18)0.11452 (14)0.0508 (5)
H8A0.41390.48750.17650.076*
H8B0.43220.39810.10290.076*
H8C0.44810.52780.08680.076*
C110.08114 (8)0.27242 (13)0.15835 (10)0.0309 (3)
C120.09618 (8)0.17563 (14)0.11323 (10)0.0341 (3)
H120.06740.15410.06690.041*
C130.15332 (9)0.11012 (13)0.13590 (10)0.0334 (3)
H130.16320.04360.10460.040*
C140.19666 (8)0.13884 (13)0.20320 (10)0.0318 (3)
C150.18046 (9)0.23622 (14)0.24851 (10)0.0345 (3)
H150.20910.25750.29510.041*
C160.12299 (9)0.30289 (13)0.22665 (10)0.0339 (3)
H160.11250.36890.25830.041*
C210.20602 (8)0.51483 (13)0.01130 (10)0.0291 (3)
C220.24017 (9)0.41154 (13)0.00733 (11)0.0348 (4)
H220.21770.34940.01840.042*
C230.30724 (9)0.40025 (13)0.04125 (11)0.0371 (4)
H230.33010.32960.03820.044*
C240.34214 (8)0.48883 (14)0.07960 (11)0.0355 (4)
C250.30692 (9)0.59088 (14)0.08402 (10)0.0350 (4)
H250.32930.65280.11020.042*
C260.23978 (8)0.60390 (13)0.05100 (10)0.0315 (3)
H260.21650.67410.05540.038*
H10.0165 (11)0.3084 (18)0.1007 (13)0.051 (6)*
H20.1286 (11)0.6090 (19)0.0307 (13)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (6)0.0282 (6)0.0518 (7)0.0027 (5)0.0111 (5)0.0020 (5)
O20.0395 (6)0.0313 (6)0.0595 (8)0.0067 (5)0.0168 (6)0.0000 (5)
O30.0365 (6)0.0332 (6)0.0498 (7)0.0006 (5)0.0139 (5)0.0026 (5)
N10.0278 (6)0.0320 (7)0.0389 (7)0.0026 (5)0.0048 (5)0.0011 (5)
N20.0281 (6)0.0269 (7)0.0384 (7)0.0020 (5)0.0039 (5)0.0021 (5)
C10.0386 (9)0.0414 (10)0.0482 (10)0.0135 (7)0.0049 (7)0.0033 (8)
C20.0305 (7)0.0325 (8)0.0304 (7)0.0024 (6)0.0008 (6)0.0011 (6)
C30.0286 (7)0.0308 (8)0.0297 (7)0.0047 (6)0.0001 (6)0.0017 (6)
C40.0293 (7)0.0311 (8)0.0300 (7)0.0058 (6)0.0017 (6)0.0026 (6)
C50.0309 (7)0.0343 (8)0.0329 (8)0.0039 (6)0.0028 (6)0.0001 (6)
C60.0472 (10)0.0346 (9)0.0599 (12)0.0025 (8)0.0159 (9)0.0037 (8)
C70.0595 (13)0.0477 (12)0.0848 (16)0.0138 (10)0.0327 (12)0.0098 (11)
C80.0335 (9)0.0503 (11)0.0694 (13)0.0037 (8)0.0150 (9)0.0061 (9)
C110.0273 (7)0.0308 (8)0.0346 (8)0.0032 (6)0.0000 (6)0.0066 (6)
C120.0322 (8)0.0349 (8)0.0355 (8)0.0002 (6)0.0042 (6)0.0022 (6)
C130.0355 (8)0.0277 (7)0.0368 (8)0.0023 (6)0.0009 (6)0.0017 (6)
C140.0285 (7)0.0305 (8)0.0365 (8)0.0034 (6)0.0004 (6)0.0068 (6)
C150.0337 (8)0.0346 (8)0.0353 (8)0.0024 (6)0.0034 (6)0.0018 (6)
C160.0355 (8)0.0311 (8)0.0350 (8)0.0059 (6)0.0015 (6)0.0004 (6)
C210.0270 (7)0.0288 (7)0.0315 (7)0.0043 (6)0.0003 (6)0.0002 (6)
C220.0328 (8)0.0256 (7)0.0462 (9)0.0055 (6)0.0041 (7)0.0021 (6)
C230.0343 (8)0.0261 (7)0.0509 (10)0.0009 (6)0.0024 (7)0.0028 (7)
C240.0291 (7)0.0356 (8)0.0419 (9)0.0043 (6)0.0034 (6)0.0046 (7)
C250.0335 (8)0.0325 (8)0.0390 (8)0.0080 (6)0.0043 (6)0.0031 (6)
C260.0314 (8)0.0274 (7)0.0357 (8)0.0021 (6)0.0002 (6)0.0037 (6)
Geometric parameters (Å, º) top
O1—C41.2458 (19)C8—C241.507 (2)
O2—C51.2214 (19)C8—H8A0.9800
O3—C51.3451 (19)C8—H8B0.9800
O3—C61.446 (2)C8—H8C0.9800
N1—C21.320 (2)C11—C121.382 (2)
N1—C111.4207 (19)C11—C161.390 (2)
N1—H10.97 (2)C12—C131.384 (2)
N2—C41.3576 (19)C12—H120.9500
N2—C211.412 (2)C13—C141.389 (2)
N2—H20.88 (2)C13—H130.9500
C1—C141.507 (2)C14—C151.393 (2)
C1—H1A0.9800C15—C161.394 (2)
C1—H1B0.9800C15—H150.9500
C1—H1C0.9800C16—H160.9500
C2—C31.388 (2)C21—C221.395 (2)
C2—H2A0.9500C21—C261.395 (2)
C3—C51.461 (2)C22—C231.388 (2)
C3—C41.470 (2)C22—H220.9500
C6—C71.491 (3)C23—C241.391 (2)
C6—H6A0.9900C23—H230.9500
C6—H6B0.9900C24—C251.391 (2)
C7—H7A0.9800C25—C261.385 (2)
C7—H7B0.9800C25—H250.9500
C7—H7C0.9800C26—H260.9500
C5—O3—C6116.13 (13)C24—C8—H8C109.5
C2—N1—C11124.50 (14)H8A—C8—H8C109.5
C2—N1—H1112.3 (13)H8B—C8—H8C109.5
C11—N1—H1122.6 (13)C12—C11—C16119.89 (14)
C4—N2—C21129.21 (14)C12—C11—N1118.09 (14)
C4—N2—H2114.2 (14)C16—C11—N1122.02 (14)
C21—N2—H2116.5 (13)C11—C12—C13119.70 (15)
C14—C1—H1A109.5C11—C12—H12120.1
C14—C1—H1B109.5C13—C12—H12120.1
H1A—C1—H1B109.5C12—C13—C14121.85 (15)
C14—C1—H1C109.5C12—C13—H13119.1
H1A—C1—H1C109.5C14—C13—H13119.1
H1B—C1—H1C109.5C13—C14—C15117.76 (14)
N1—C2—C3125.72 (15)C13—C14—C1120.62 (15)
N1—C2—H2A117.1C15—C14—C1121.62 (15)
C3—C2—H2A117.1C14—C15—C16121.08 (15)
C2—C3—C5117.15 (14)C14—C15—H15119.5
C2—C3—C4120.36 (14)C16—C15—H15119.5
C5—C3—C4122.29 (13)C11—C16—C15119.72 (15)
O1—C4—N2122.23 (14)C11—C16—H16120.1
O1—C4—C3120.75 (13)C15—C16—H16120.1
N2—C4—C3117.02 (14)C22—C21—C26118.90 (14)
O2—C5—O3121.02 (15)C22—C21—N2124.49 (14)
O2—C5—C3125.61 (15)C26—C21—N2116.53 (14)
O3—C5—C3113.37 (13)C23—C22—C21119.48 (14)
O3—C6—C7106.77 (15)C23—C22—H22120.3
O3—C6—H6A110.4C21—C22—H22120.3
C7—C6—H6A110.4C22—C23—C24122.27 (15)
O3—C6—H6B110.4C22—C23—H23118.9
C7—C6—H6B110.4C24—C23—H23118.9
H6A—C6—H6B108.6C23—C24—C25117.49 (15)
C6—C7—H7A109.5C23—C24—C8120.95 (16)
C6—C7—H7B109.5C25—C24—C8121.56 (16)
H7A—C7—H7B109.5C26—C25—C24121.22 (15)
C6—C7—H7C109.5C26—C25—H25119.4
H7A—C7—H7C109.5C24—C25—H25119.4
H7B—C7—H7C109.5C25—C26—C21120.62 (15)
C24—C8—H8A109.5C25—C26—H26119.7
C24—C8—H8B109.5C21—C26—H26119.7
H8A—C8—H8B109.5
C11—N1—C2—C3174.78 (14)C11—C12—C13—C140.1 (2)
N1—C2—C3—C5175.86 (15)C12—C13—C14—C150.6 (2)
N1—C2—C3—C40.9 (2)C12—C13—C14—C1178.83 (15)
C21—N2—C4—O16.6 (2)C13—C14—C15—C160.4 (2)
C21—N2—C4—C3173.92 (14)C1—C14—C15—C16179.03 (15)
C2—C3—C4—O14.3 (2)C12—C11—C16—C150.8 (2)
C5—C3—C4—O1179.08 (14)N1—C11—C16—C15178.07 (14)
C2—C3—C4—N2175.10 (14)C14—C15—C16—C110.3 (2)
C5—C3—C4—N20.4 (2)C4—N2—C21—C2210.2 (3)
C6—O3—C5—O26.2 (2)C4—N2—C21—C26172.94 (15)
C6—O3—C5—C3172.92 (15)C26—C21—C22—C231.3 (2)
C2—C3—C5—O2175.98 (15)N2—C21—C22—C23175.49 (15)
C4—C3—C5—O21.1 (3)C21—C22—C23—C240.1 (3)
C2—C3—C5—O33.1 (2)C22—C23—C24—C250.7 (3)
C4—C3—C5—O3178.03 (13)C22—C23—C24—C8178.98 (17)
C5—O3—C6—C7177.95 (16)C23—C24—C25—C260.4 (2)
C2—N1—C11—C12144.73 (16)C8—C24—C25—C26179.34 (16)
C2—N1—C11—C1634.1 (2)C24—C25—C26—C210.8 (2)
C16—C11—C12—C130.6 (2)C22—C21—C26—C251.7 (2)
N1—C11—C12—C13178.31 (14)N2—C21—C26—C25175.37 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.952.683.620 (2)170
C25—H25···O2ii0.952.703.4685 (19)139
N1—H1···O10.97 (2)1.85 (2)2.6383 (17)135.9 (18)
N2—H2···O20.88 (2)1.92 (2)2.6713 (18)143.0 (19)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC20H22N2O3
Mr338.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)18.8170 (4), 11.9752 (3), 15.6043 (4)
β (°) 91.470 (1)
V3)3515.07 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.26 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.965, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
16569, 4353, 3411
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.147, 1.05
No. of reflections4353
No. of parameters237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.952.683.620 (2)170.3
C25—H25···O2ii0.952.703.4685 (19)138.8
N1—H1···O10.97 (2)1.85 (2)2.6383 (17)135.9 (18)
N2—H2···O20.88 (2)1.92 (2)2.6713 (18)143.0 (19)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear sciences, Government of India, for the Young Scientist award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerry, D. F. & Royd, S. A. (1984). Soil Sci. Soc. Am. J. 48, 565–569.  CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarudachari, B., Satyanarayana, M. N., Thippeswamy, B., Shivakumar, C. K., Shivananda, K. N., Hegde, G. & Isloor, A. M. (2012). Eur. J. Med. Chem. 54, 900–906.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKasthuri, J., Santhanalakshmi, J. & Rajendiran, N. (2008). J. Iran. Chem. Soc. 3, 436–444.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, V., Perumal, S., Avendano, C. & Menendez, J. C. (2006). Synlett, pp. 91–95.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds