metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[2-(pyridin-2-yldisulfan­yl)pyridine-κ2N,S]copper(I)]-μ1,5-dicyanamido]

aNational Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
*Correspondence e-mail: wushixi_308@yahoo.com.cn

(Received 8 January 2011; accepted 20 January 2011; online 29 January 2011)

In the title compound, [Cu(C2N3)(C10H8N2S2)]n, the CuI atoms are connected by bridging dicyanamide ligands, forming chains parallel to [100]. Each CuI atom displays a tetra­hedral coordination environment, formed by one S atom and three N atoms from one 2-(pyridin-2-yldisulfan­yl)pyridine and two dicyanamide ligands. The crystal structure is stabilized by C—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For potential applications of metal-organic frameworks, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]). For metal-organic frameworks constructed from flexible ligands, see: Xu et al. (2009[Xu, B., Lu, J. & Cao, R. (2009). Cryst. Growth Des. 9, 3003-3005.]). For related structures, see: Mal et al. (2006[Mal, D., Tuchagues, J.-P., Chakraborty, S., Mukherjee, A. K., Sen, R. & Koner, S. (2006). Inorg. Chim. Acta, 359, 4431-4435.]); Schlueter et al. (2007[Schlueter, J. A., Manson, J. L., Hyzer, K. A. & Geiser, U. (2007). Polyhedron, 26, 2264-2272.]); Sen et al. (2007[Sen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007). Inorg. Chim. Acta, 360, 4085-4092.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2N3)(C10H8N2S2)]

  • Mr = 349.92

  • Triclinic, [P \overline 1]

  • a = 7.6294 (15) Å

  • b = 9.5964 (19) Å

  • c = 10.202 (2) Å

  • α = 84.19 (3)°

  • β = 80.63 (3)°

  • γ = 70.93 (3)°

  • V = 695.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.893, Tmax = 1.000

  • 6615 measured reflections

  • 2669 independent reflections

  • 2301 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.081

  • S = 1.07

  • 2669 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N3i 0.93 2.53 3.453 (3) 171
Symmetry code: (i) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic compounds have attracted much attention because of their diverse structures (Eddaoudi et al., 2001). Flexible ligands can play different roles in constructing metal-organic frameworks (Xu et al., 2009). The title compound, {C12H8CuN5S2}n, is constructed by two kinds of flexible ligands: briding dicyanamide ligands and chelate 2-(pyridin-2-yldisulfanyl)pyridine ligands. In this paper, the crystal structure of the title compound is presented. As illustrated in Fig. 1, the Cu atoms are connected by briding dicyanamide ligands, forming a serrate chain. Each Cu atom displays a tetrahedral coordination environment, formed by one S atom and three N atoms from one 2-(pyridin-2-yldisulfanyl)pyridine and two dicyanamide ligands, where the Cu—S and average Cu—N bonds are 2.472 (1) and 1.969 Å, respectively. The crystal structure is stabilized by C—H···N hydrogen bonds [H9···N3iii = 2.53 Å, C9···N3iii = 3.453 (3) Å, and C9—H9···N3iii = 171°] between the central N atom of the dicyanamide and one H atom of a pyridine ring, forming a three-dimensional network [symmetry code: (iii) x + 1, y - 1, z].

Related literature top

For potential applications of metal-organic frameworks, see: Eddaoudi et al. (2001). For metal-organic frameworks constructed from flexible ligands, see: Xu et al. (2009). For related structures, see: Mal et al. (2006); Schlueter et al. (2007); Sen et al. (2007).

Experimental top

CuN(CN)2 (0.4 mmol) and NaN(CN)2 (1.2 mmol) were added into 2 ml DMF with thorough stir for 6 minutes. After filtration, the colorless filtrate was carefully laid on the surface with the solution of bis(2-pyridyl)disulfide (0.5 mmol) in 5 ml i-PrOH. Colorless crystals were obtained after 3 weeks.

Refinement top

The H atoms were positioned geometrically and refined with a riding model, with C—H = 0.93 Å and Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted [symmetry code: (i) x+1, y, z].
catena-Poly[[[2-(pyridin-2-yldisulfanyl)pyridine- κ2N,S]copper(I)]-µ1,5-dicyanamido] top
Crystal data top
[Cu(C2N3)(C10H8N2S2)]Z = 2
Mr = 349.92F(000) = 352
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6294 (15) ÅCell parameters from 3088 reflections
b = 9.5964 (19) Åθ = 3.0–28.9°
c = 10.202 (2) ŵ = 1.87 mm1
α = 84.19 (3)°T = 293 K
β = 80.63 (3)°Block, colourless
γ = 70.93 (3)°0.20 × 0.16 × 0.12 mm
V = 695.6 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2669 independent reflections
Radiation source: fine-focus sealed tube2301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.893, Tmax = 1.000k = 1111
6615 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.0204P]
where P = (Fo2 + 2Fc2)/3
2669 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C2N3)(C10H8N2S2)]γ = 70.93 (3)°
Mr = 349.92V = 695.6 (2) Å3
Triclinic, P1Z = 2
a = 7.6294 (15) ÅMo Kα radiation
b = 9.5964 (19) ŵ = 1.87 mm1
c = 10.202 (2) ÅT = 293 K
α = 84.19 (3)°0.20 × 0.16 × 0.12 mm
β = 80.63 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2301 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 1.000Rint = 0.018
6615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
2669 reflectionsΔρmin = 0.29 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.03943 (3)0.83530 (3)0.16964 (3)0.05693 (13)
S10.00326 (7)0.67390 (7)0.37486 (5)0.05609 (17)
S20.11161 (9)0.47767 (7)0.28919 (5)0.06255 (18)
N10.3026 (2)0.9293 (2)0.16879 (19)0.0580 (5)
N20.1131 (2)0.9633 (2)0.17961 (19)0.0599 (5)
N30.6377 (2)1.0592 (2)0.2077 (2)0.0694 (6)
N40.3589 (3)0.6469 (2)0.38308 (18)0.0610 (5)
N50.1249 (2)0.65814 (18)0.06703 (15)0.0464 (4)
C10.4605 (3)0.9840 (2)0.1839 (2)0.0489 (5)
C20.2361 (3)1.0016 (2)0.1905 (2)0.0480 (5)
C30.1841 (3)0.7106 (2)0.43562 (18)0.0452 (4)
C40.1311 (3)0.8103 (3)0.5330 (2)0.0612 (6)
H40.00590.84990.56840.073*
C50.2682 (4)0.8504 (3)0.5770 (2)0.0709 (7)
H50.23720.91970.64140.085*
C60.4516 (4)0.7863 (3)0.5242 (2)0.0692 (7)
H60.54750.81090.55190.083*
C70.4889 (3)0.6858 (3)0.4302 (2)0.0695 (7)
H70.61360.64090.39630.083*
C80.1811 (3)0.5212 (2)0.11824 (18)0.0462 (5)
C90.2919 (4)0.4027 (2)0.0454 (2)0.0627 (6)
H90.32450.30780.08500.075*
C100.3528 (4)0.4264 (3)0.0852 (2)0.0681 (7)
H100.42890.34840.13620.082*
C110.2996 (4)0.5682 (3)0.1403 (2)0.0660 (6)
H110.34020.58770.22920.079*
C120.1868 (3)0.6795 (2)0.0633 (2)0.0568 (5)
H120.15050.77480.10190.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03597 (17)0.0595 (2)0.0745 (2)0.01273 (13)0.00278 (13)0.01572 (14)
S10.0434 (3)0.0798 (4)0.0469 (3)0.0244 (3)0.0007 (2)0.0063 (3)
S20.0847 (4)0.0645 (4)0.0502 (3)0.0423 (3)0.0082 (3)0.0048 (3)
N10.0393 (10)0.0623 (11)0.0748 (12)0.0157 (9)0.0099 (8)0.0125 (9)
N20.0394 (10)0.0572 (11)0.0836 (13)0.0155 (9)0.0067 (9)0.0086 (10)
N30.0382 (10)0.0433 (10)0.1278 (17)0.0077 (8)0.0184 (10)0.0154 (11)
N40.0464 (10)0.0763 (13)0.0606 (10)0.0187 (9)0.0016 (8)0.0213 (10)
N50.0448 (9)0.0463 (9)0.0459 (9)0.0120 (7)0.0051 (7)0.0025 (7)
C10.0433 (12)0.0430 (10)0.0654 (12)0.0170 (9)0.0154 (10)0.0011 (9)
C20.0353 (10)0.0381 (10)0.0647 (12)0.0040 (8)0.0064 (9)0.0028 (9)
C30.0450 (11)0.0532 (11)0.0357 (9)0.0147 (9)0.0049 (8)0.0008 (9)
C40.0542 (13)0.0674 (14)0.0528 (11)0.0058 (11)0.0028 (10)0.0145 (11)
C50.0843 (18)0.0700 (15)0.0601 (13)0.0197 (14)0.0148 (12)0.0186 (12)
C60.0719 (16)0.0802 (17)0.0667 (14)0.0325 (14)0.0237 (13)0.0036 (13)
C70.0453 (12)0.0879 (18)0.0762 (15)0.0188 (12)0.0066 (11)0.0184 (14)
C80.0496 (11)0.0484 (11)0.0467 (10)0.0227 (9)0.0093 (9)0.0022 (9)
C90.0802 (17)0.0417 (11)0.0665 (14)0.0190 (11)0.0118 (12)0.0030 (11)
C100.0834 (18)0.0525 (13)0.0635 (14)0.0162 (12)0.0008 (12)0.0167 (11)
C110.0817 (17)0.0652 (15)0.0466 (11)0.0200 (13)0.0006 (11)0.0081 (11)
C120.0596 (13)0.0518 (12)0.0520 (11)0.0108 (10)0.0056 (10)0.0024 (10)
Geometric parameters (Å, º) top
Cu1—N11.9143 (18)C3—C41.369 (3)
Cu1—N21.967 (2)C4—C51.377 (4)
Cu1—N52.0244 (18)C4—H40.9300
Cu1—S12.4720 (10)C5—C61.373 (4)
S1—C31.792 (2)C5—H50.9300
S1—S22.0207 (11)C6—C71.361 (4)
S2—C81.787 (2)C6—H60.9300
N1—C11.138 (3)C7—H70.9300
N2—C21.138 (3)C8—C91.378 (3)
N3—C2i1.298 (3)C9—C101.360 (3)
N3—C11.303 (3)C9—H90.9300
N4—C31.319 (3)C10—C111.375 (3)
N4—C71.337 (3)C10—H100.9300
N5—C81.322 (3)C11—C121.359 (3)
N5—C121.356 (3)C11—H110.9300
C2—N3ii1.298 (3)C12—H120.9300
N1—Cu1—N2117.16 (8)C6—C5—C4118.9 (2)
N1—Cu1—N5126.58 (8)C6—C5—H5120.6
N2—Cu1—N5107.60 (7)C4—C5—H5120.6
N1—Cu1—S1106.75 (7)C7—C6—C5118.1 (2)
N2—Cu1—S1104.29 (6)C7—C6—H6121.0
N5—Cu1—S187.90 (5)C5—C6—H6121.0
C3—S1—S2105.95 (8)N4—C7—C6124.6 (2)
C3—S1—Cu1102.35 (7)N4—C7—H7117.7
S2—S1—Cu198.20 (4)C6—C7—H7117.7
C8—S2—S1105.52 (8)N5—C8—C9123.48 (18)
C1—N1—Cu1172.06 (19)N5—C8—S2121.22 (16)
C2—N2—Cu1161.63 (17)C9—C8—S2115.29 (16)
C2i—N3—C1120.23 (19)C10—C9—C8119.1 (2)
C3—N4—C7115.9 (2)C10—C9—H9120.5
C8—N5—C12116.52 (18)C8—C9—H9120.5
C8—N5—Cu1124.88 (13)C9—C10—C11118.6 (2)
C12—N5—Cu1118.59 (14)C9—C10—H10120.7
N1—C1—N3173.2 (2)C11—C10—H10120.7
N2—C2—N3ii173.5 (2)C12—C11—C10119.2 (2)
N4—C3—C4124.4 (2)C12—C11—H11120.4
N4—C3—S1119.92 (16)C10—C11—H11120.4
C4—C3—S1115.61 (16)N5—C12—C11123.1 (2)
C3—C4—C5118.1 (2)N5—C12—H12118.5
C3—C4—H4120.9C11—C12—H12118.5
C5—C4—H4120.9
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N3iii0.932.533.453 (3)171
Symmetry code: (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C2N3)(C10H8N2S2)]
Mr349.92
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6294 (15), 9.5964 (19), 10.202 (2)
α, β, γ (°)84.19 (3), 80.63 (3), 70.93 (3)
V3)695.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.893, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6615, 2669, 2301
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.07
No. of reflections2669
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N3i0.932.533.453 (3)171
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Nos. 50602024, 50972060) and NUST Research Funding (No. 2010ZDJH06).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMal, D., Tuchagues, J.-P., Chakraborty, S., Mukherjee, A. K., Sen, R. & Koner, S. (2006). Inorg. Chim. Acta, 359, 4431–4435.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchlueter, J. A., Manson, J. L., Hyzer, K. A. & Geiser, U. (2007). Polyhedron, 26, 2264–2272.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007). Inorg. Chim. Acta, 360, 4085–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, B., Lu, J. & Cao, R. (2009). Cryst. Growth Des. 9, 3003–3005.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds