organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-2-Hy­dr­oxy-5-(tri­fluoro­meth­­oxy)benzyl­­idene­amino]-4-methyl­phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Yüzüncü Yıl Univercity, TR-65250 Van, Turkey
*Correspondence e-mail: asli.karadag@omu.edu.tr

(Received 1 November 2010; accepted 2 December 2010; online 11 December 2010)

The title compound, C15H12F3NO3, is a Schiff base which adopts the cis-quinoid form in the solid state. The dihedral angle between the least-squares planes of the benzene rings being 3.6 (1)°. The F atoms of the –CF3 group are disordered over two sets of sites with refined occupancies of 0.61 (5) and 0.39 (5). An intra­molecular N—H⋯O hydrogen bond occurs. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds.

Related literature

Schiff base compounds can be classified by their photochromic and thermochromic characteristics, see: Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). For Schiff base tautomerism, see: Karabıyık et al. (2008[Karabıyık, H., Ocak-İskeleli, N., Petek, H., Albayrak, Ç. & Agar, E. (2008). J. Mol. Struct. 873, 130-136.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12F3NO3

  • Mr = 311.26

  • Triclinic, [P \overline 1]

  • a = 6.4730 (5) Å

  • b = 8.4435 (6) Å

  • c = 13.0369 (9) Å

  • α = 82.171 (6)°

  • β = 88.034 (6)°

  • γ = 85.622 (6)°

  • V = 703.62 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.58 × 0.27 × 0.03 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.953, Tmax = 0.995

  • 11152 measured reflections

  • 2762 independent reflections

  • 1328 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.077

  • S = 0.89

  • 2762 reflections

  • 236 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H111⋯O2 0.99 (3) 1.72 (3) 2.546 (2) 138 (2)
O1—H1A⋯O2i 0.99 (3) 1.63 (3) 2.591 (2) 164 (3)
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964). These properties result from proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987).

There are two types of intramolecular hydrogen bonds in Schiff bases, N—H···O hydrogen bond in keto-amine or N···H—O hydrogen bond in phenol-imine tautomeric forms (Karabıyık et al., 2008).

The present X-ray investigation shows that the title compound is a Schiff base which exists in the cis-quinoid form in the solid-state. A PLATON plot of the molecule is shown in Fig.1. The molecule is nearly planar, the angle between the least-squares planes of the benzene rings being 3.6 (1)°. The F atoms of the CF3 group are disordered over two sets of sites with refined occupancies of 0.61 (5) and 0.39 (5). The N1—C14 bond length of 1.305 (3) Å is typical of a double bond. The crystal structure is stabilized by intra- and intermolecular O—H···O and N—H···O hydrogen bonds.

Related literature top

Schiff base compounds can be classified by their photochromic and thermochromic characteristics, see: Calligaris et al. (1972); Cohen et al. (1964); Hadjoudis et al. (1987). For Schiff base tautomerism, see: Karabıyık et al. (2008).

Experimental top

The title compound was prepared by the reaction of a solution containing 2-hydroxy-5-(trifluoromethoxy)benzaldehyde (0.045 g 0.23 mmol) in 20 ml ethanol and a solution containing 4-amino-4-methylphenol (0.029 g 0.23 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. Crystals of the title compound suitable for a X-ray analysis were obtained from ethylalcohol by slow evaporation (yield 64%; m.p.402–408 K).

Refinement top

The structure of the title compound was solved by direct methods and refined by full-matrix least-square techniques. The H atoms bonded to O1 and N1 were freely refined. All other H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964). These properties result from proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987).

There are two types of intramolecular hydrogen bonds in Schiff bases, N—H···O hydrogen bond in keto-amine or N···H—O hydrogen bond in phenol-imine tautomeric forms (Karabıyık et al., 2008).

The present X-ray investigation shows that the title compound is a Schiff base which exists in the cis-quinoid form in the solid-state. A PLATON plot of the molecule is shown in Fig.1. The molecule is nearly planar, the angle between the least-squares planes of the benzene rings being 3.6 (1)°. The F atoms of the CF3 group are disordered over two sets of sites with refined occupancies of 0.61 (5) and 0.39 (5). The N1—C14 bond length of 1.305 (3) Å is typical of a double bond. The crystal structure is stabilized by intra- and intermolecular O—H···O and N—H···O hydrogen bonds.

Schiff base compounds can be classified by their photochromic and thermochromic characteristics, see: Calligaris et al. (1972); Cohen et al. (1964); Hadjoudis et al. (1987). For Schiff base tautomerism, see: Karabıyık et al. (2008).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound showing the atom numbering scheme and displacement ellipsoids for the non-H atoms at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the O—H···O hydrogen bonds represented as dashed lines [symmetry code: (i)-x, -y + 2, -z + 1].
2-[(E)-2-Hydroxy-5-(trifluoromethoxy)benzylideneamino]-4-methylphenol top
Crystal data top
C15H12F3NO3Z = 2
Mr = 311.26F(000) = 320
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4730 (5) ÅCell parameters from 7349 reflections
b = 8.4435 (6) Åθ = 1.6–27.9°
c = 13.0369 (9) ŵ = 0.13 mm1
α = 82.171 (6)°T = 293 K
β = 88.034 (6)°Prism, yellow
γ = 85.622 (6)°0.58 × 0.27 × 0.03 mm
V = 703.62 (9) Å3
Data collection top
Stoe IPDS 2
diffractometer
2762 independent reflections
Radiation source: fine-focus sealed tube1328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.6°
rotation method scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.953, Tmax = 0.995l = 1616
11152 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0202P)2]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.10 e Å3
3 restraintsΔρmin = 0.14 e Å3
Crystal data top
C15H12F3NO3γ = 85.622 (6)°
Mr = 311.26V = 703.62 (9) Å3
Triclinic, P1Z = 2
a = 6.4730 (5) ÅMo Kα radiation
b = 8.4435 (6) ŵ = 0.13 mm1
c = 13.0369 (9) ÅT = 293 K
α = 82.171 (6)°0.58 × 0.27 × 0.03 mm
β = 88.034 (6)°
Data collection top
Stoe IPDS 2
diffractometer
2762 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1328 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.995Rint = 0.078
11152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.10 e Å3
2762 reflectionsΔρmin = 0.14 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C160.9623 (6)0.7727 (5)0.9480 (2)0.0728 (9)
H1A0.054 (5)0.899 (4)0.399 (2)0.114 (12)*
H1110.303 (4)0.857 (3)0.540 (2)0.097 (10)*
C10.7674 (4)0.9053 (3)0.81076 (18)0.0484 (6)
C20.5942 (4)0.9960 (3)0.84348 (18)0.0561 (7)
H20.59801.04120.90450.067*
C30.4201 (4)1.0184 (3)0.78629 (18)0.0544 (7)
H30.30591.07920.80890.065*
C40.4088 (4)0.9514 (3)0.69342 (17)0.0462 (6)
C50.5886 (4)0.8589 (3)0.66153 (16)0.0427 (6)
C60.7678 (4)0.8403 (3)0.72199 (18)0.0486 (6)
H60.88610.78300.70050.058*
C70.3895 (4)0.7180 (3)0.42719 (17)0.0424 (6)
C80.1917 (4)0.7462 (3)0.38710 (18)0.0477 (6)
C90.1518 (4)0.6878 (3)0.29666 (19)0.0592 (7)
H90.02120.70740.26800.071*
C100.3056 (4)0.6007 (3)0.2487 (2)0.0602 (8)
H100.27600.56180.18790.072*
C110.5026 (4)0.5689 (3)0.28793 (18)0.0500 (6)
C120.5427 (4)0.6285 (3)0.37817 (17)0.0464 (6)
H120.67360.60870.40650.056*
C130.6709 (4)0.4766 (3)0.2318 (2)0.0702 (8)
H13A0.74430.55010.18380.105*
H13B0.60930.40190.19500.105*
H13C0.76570.41940.28120.105*
C140.5861 (4)0.7821 (3)0.57199 (17)0.0442 (6)
H140.70590.72530.55160.053*
F1A0.8285 (13)0.808 (3)1.0198 (5)0.120 (4)0.61 (5)
F2B0.952 (2)0.6343 (7)0.9169 (9)0.106 (3)0.61 (5)
F3A1.1534 (11)0.7647 (17)0.9796 (12)0.103 (3)0.61 (5)
F1B0.819 (2)0.769 (3)1.0204 (10)0.141 (7)0.39 (5)
F2A0.916 (4)0.6340 (8)0.9273 (14)0.110 (6)0.39 (5)
F3B1.122 (4)0.771 (3)1.007 (3)0.154 (8)0.39 (5)
N10.4201 (3)0.7886 (2)0.51702 (14)0.0433 (5)
O10.0485 (3)0.8293 (2)0.44187 (13)0.0619 (5)
O20.2431 (2)0.9701 (2)0.63948 (12)0.0576 (5)
O330.9507 (3)0.8897 (2)0.86952 (14)0.0682 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C160.093 (3)0.080 (3)0.0477 (19)0.007 (2)0.0135 (18)0.0181 (19)
C10.0470 (17)0.0509 (17)0.0475 (14)0.0074 (14)0.0058 (12)0.0040 (13)
C20.0695 (19)0.0587 (18)0.0424 (14)0.0121 (15)0.0007 (13)0.0112 (13)
C30.0542 (17)0.0556 (18)0.0531 (15)0.0019 (14)0.0066 (13)0.0113 (13)
C40.0469 (16)0.0454 (16)0.0456 (14)0.0011 (13)0.0006 (12)0.0048 (12)
C50.0419 (16)0.0447 (16)0.0411 (13)0.0005 (13)0.0000 (12)0.0060 (12)
C60.0441 (16)0.0467 (16)0.0540 (15)0.0001 (12)0.0006 (12)0.0049 (13)
C70.0465 (17)0.0377 (15)0.0430 (14)0.0025 (13)0.0011 (12)0.0060 (11)
C80.0465 (16)0.0452 (17)0.0508 (14)0.0001 (13)0.0013 (12)0.0054 (13)
C90.0595 (19)0.0566 (18)0.0634 (17)0.0042 (15)0.0145 (14)0.0108 (14)
C100.072 (2)0.0552 (19)0.0583 (16)0.0090 (16)0.0038 (15)0.0207 (14)
C110.0616 (18)0.0391 (16)0.0499 (14)0.0065 (13)0.0073 (12)0.0089 (12)
C120.0453 (16)0.0418 (16)0.0510 (15)0.0005 (13)0.0001 (12)0.0042 (12)
C130.080 (2)0.0564 (18)0.0773 (19)0.0037 (16)0.0181 (16)0.0256 (15)
C140.0404 (16)0.0428 (16)0.0470 (14)0.0040 (12)0.0026 (12)0.0023 (12)
F1A0.153 (7)0.149 (9)0.046 (4)0.051 (4)0.002 (4)0.007 (4)
F2B0.127 (5)0.085 (7)0.106 (5)0.031 (5)0.024 (4)0.030 (5)
F3A0.069 (6)0.158 (5)0.078 (5)0.007 (3)0.048 (3)0.003 (4)
F1B0.190 (14)0.108 (9)0.098 (10)0.030 (6)0.077 (11)0.037 (7)
F2A0.189 (14)0.045 (7)0.094 (8)0.013 (7)0.087 (9)0.019 (6)
F3B0.22 (2)0.165 (10)0.082 (11)0.021 (10)0.082 (9)0.007 (7)
N10.0387 (13)0.0436 (14)0.0467 (12)0.0048 (10)0.0011 (10)0.0063 (10)
O10.0488 (11)0.0748 (14)0.0604 (11)0.0158 (10)0.0036 (9)0.0138 (10)
O20.0461 (11)0.0673 (13)0.0592 (10)0.0141 (9)0.0051 (9)0.0173 (9)
O330.0648 (14)0.0784 (14)0.0620 (12)0.0158 (11)0.0203 (10)0.0008 (11)
Geometric parameters (Å, º) top
C16—F2B1.294 (5)C7—C81.391 (3)
C16—F2A1.295 (5)C7—C121.392 (3)
C16—F1B1.302 (6)C7—N11.411 (3)
C16—F1A1.303 (5)C8—O11.362 (3)
C16—F3A1.312 (5)C8—C91.378 (3)
C16—F3B1.312 (6)C9—C101.376 (3)
C16—O331.322 (3)C9—H90.9300
C1—C61.347 (3)C10—C111.383 (3)
C1—C21.396 (3)C10—H100.9300
C1—O331.422 (3)C11—C121.381 (3)
C2—C31.360 (3)C11—C131.517 (3)
C2—H20.9300C12—H120.9300
C3—C41.411 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—O21.291 (3)C13—H13C0.9600
C4—C51.433 (3)C14—N11.305 (3)
C5—C61.411 (3)C14—H140.9300
C5—C141.412 (3)N1—H1110.98 (3)
C6—H60.9300O1—H1A0.99 (3)
F2B—C16—F1B101.8 (16)C8—C7—N1115.3 (2)
F2A—C16—F1A105 (2)C12—C7—N1124.3 (2)
F2A—C16—F3A110.3 (14)O1—C8—C9124.3 (2)
F1A—C16—F3A111.9 (7)O1—C8—C7116.8 (2)
F2B—C16—F3B110.6 (14)C9—C8—C7118.9 (2)
F1B—C16—F3B97.7 (19)C10—C9—C8119.9 (2)
F2B—C16—O33111.3 (5)C10—C9—H9120.1
F2A—C16—O33115.5 (7)C8—C9—H9120.1
F1B—C16—O33119.0 (11)C9—C10—C11122.3 (2)
F1A—C16—O33108.7 (9)C9—C10—H10118.8
F3A—C16—O33105.6 (7)C11—C10—H10118.8
F3B—C16—O33115.1 (14)C12—C11—C10117.7 (2)
C6—C1—C2121.3 (2)C12—C11—C13121.1 (2)
C6—C1—O33119.5 (2)C10—C11—C13121.2 (2)
C2—C1—O33119.0 (2)C11—C12—C7120.7 (2)
C3—C2—C1120.1 (2)C11—C12—H12119.6
C3—C2—H2119.9C7—C12—H12119.6
C1—C2—H2119.9C11—C13—H13A109.5
C2—C3—C4121.4 (2)C11—C13—H13B109.5
C2—C3—H3119.3H13A—C13—H13B109.5
C4—C3—H3119.3C11—C13—H13C109.5
O2—C4—C3121.8 (2)H13A—C13—H13C109.5
O2—C4—C5120.8 (2)H13B—C13—H13C109.5
C3—C4—C5117.3 (2)N1—C14—C5121.7 (2)
C6—C5—C14119.7 (2)N1—C14—H14119.1
C6—C5—C4119.7 (2)C5—C14—H14119.1
C14—C5—C4120.6 (2)C14—N1—C7129.2 (2)
C1—C6—C5120.1 (2)C14—N1—H111114.7 (17)
C1—C6—H6120.0C7—N1—H111116.0 (17)
C5—C6—H6120.0C8—O1—H1A114.9 (17)
C8—C7—C12120.4 (2)C16—O33—C1116.4 (2)
C6—C1—C2—C30.9 (4)C9—C10—C11—C120.3 (4)
O33—C1—C2—C3177.2 (2)C9—C10—C11—C13178.2 (3)
C1—C2—C3—C40.1 (4)C10—C11—C12—C70.3 (3)
C2—C3—C4—O2179.0 (3)C13—C11—C12—C7177.7 (3)
C2—C3—C4—C50.1 (4)C8—C7—C12—C111.3 (4)
O2—C4—C5—C6180.0 (2)N1—C7—C12—C11177.3 (2)
C3—C4—C5—C60.9 (3)C6—C5—C14—N1176.1 (2)
O2—C4—C5—C141.9 (4)C4—C5—C14—N11.9 (3)
C3—C4—C5—C14177.2 (2)C5—C14—N1—C7179.0 (2)
C2—C1—C6—C52.0 (4)C8—C7—N1—C14179.2 (3)
O33—C1—C6—C5178.2 (2)C12—C7—N1—C142.1 (4)
C14—C5—C6—C1176.1 (2)F2B—C16—O33—C160.1 (7)
C4—C5—C6—C11.9 (4)F2A—C16—O33—C148.0 (16)
C12—C7—C8—O1177.5 (2)F1B—C16—O33—C157.8 (14)
N1—C7—C8—O13.8 (3)F1A—C16—O33—C169.6 (9)
C12—C7—C8—C91.8 (4)F3A—C16—O33—C1170.2 (7)
N1—C7—C8—C9176.9 (2)F3B—C16—O33—C1173.1 (19)
O1—C8—C9—C10177.9 (3)C6—C1—O33—C1697.4 (3)
C7—C8—C9—C101.3 (4)C2—C1—O33—C1686.3 (3)
C8—C9—C10—C110.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H111···O10.99 (3)2.16 (3)2.610 (3)106 (2)
N1—H111···O20.99 (3)1.72 (3)2.546 (2)138 (2)
O1—H1A···O2i0.99 (3)1.63 (3)2.591 (2)164 (3)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H12F3NO3
Mr311.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4730 (5), 8.4435 (6), 13.0369 (9)
α, β, γ (°)82.171 (6), 88.034 (6), 85.622 (6)
V3)703.62 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.58 × 0.27 × 0.03
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.953, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
11152, 2762, 1328
Rint0.078
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.077, 0.89
No. of reflections2762
No. of parameters236
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.14

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H111···O10.99 (3)2.16 (3)2.610 (3)106 (2)
N1—H111···O20.99 (3)1.72 (3)2.546 (2)138 (2)
O1—H1A···O2i0.99 (3)1.63 (3)2.591 (2)164 (3)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

References

First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKarabıyık, H., Ocak-İskeleli, N., Petek, H., Albayrak, Ç. & Agar, E. (2008). J. Mol. Struct. 873, 130–136.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds