organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Bromo-4-(2-nitro­prop-1-en­yl)benzene

aDepartment of Pharmaceutical and Chemical Engineering, Taizhou College, Linhai, Zhejiang 317000, People's Republic of China
*Correspondence e-mail: bailinli1972@gmail.com

(Received 11 November 2009; accepted 17 November 2009; online 21 November 2009)

The title compound, C9H8BrNO2, which was synthesized by the condensation of 4-bromo­benzaldehyde with nitro­ethane, possesses a trans configuration. The dihedral angle between the benzene ring and the mean plane of the double bond is 7.31 (3)°. The crystal structure is stabilized by short inter­molecular Br⋯O contacts [3.168 (4) Å].

Related literature

For general background to nitro­alkenes as inter­mediates in the preparation of numerous products including insecticides and pharmacologically active substances, see: Boelle et al. (1998[Boelle, J., Schneider, R., Gerardin, P., Loubinoux, B., Maienfish, P. & Rindlisbacher, A. (1998). Pestic. Sci. 54, 304-307.]); Vallejos et al. (2005[Vallejos, G., Fierro, A., Rezende, M. C., Sepulveda-Boza, S. & Reyes-Parada, M. (2005). Bioorg. Med. Chem. 13, 4450-4457.]). For related structures, see: Boys et al. (1993[Boys, D., Manríquez, V. & Cassels, B. K. (1993). Acta Cryst. C49, 387-388.]); Mugnoli et al. (1991[Mugnoli, A., Pani, M., Carnasciali, M. M. & Speranza, G. (1991). Z. Kristallogr. 196, 291-293.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8BrNO2

  • Mr = 242.07

  • Triclinic, [P \overline 1]

  • a = 6.9787 (5) Å

  • b = 7.4123 (5) Å

  • c = 9.7659 (6) Å

  • α = 105.435 (2)°

  • β = 95.087 (2)°

  • γ = 104.323 (2)°

  • V = 465.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.38 mm−1

  • T = 296 K

  • 0.21 × 0.19 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.388, Tmax = 0.703

  • 4605 measured reflections

  • 2112 independent reflections

  • 1303 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.00

  • 2112 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitroalkenes are valuable intermediates for preparation of numerous products including insecticides and pharmacologically active substances (Boelle et al., 1998 and Vallejos et al., 2005) in which the nitro group can be easily transformed into a variety of groups with different functionalities, such as amine, carbonyl groups, etc.. In this article, the crystal structure of the title compound (E)-1-bromo-4-(2-nitroprop-1-enyl)benzene is presented (Fig. 1). The dihedral angle between the benzene ring and the mean plan of the double bond H7/C7/C8/C9 is 7.31 (3) °. The crystal structure is stabilized by short intermolecular Br—O contacts [3.168 (4) Å].

Related literature top

For general background to nitroalkenes as intermediates in the preparation of numerous products including insecticides and pharmacologically active substances, see: Boelle et al. (1998); Vallejos et al. (2005). For related structures, see: Boys et al. (1993); Mugnoli et al. (1991).

Experimental top

To a solution of 4-bromobenzaldehyde (50 mmol) in AcOH (25 ml), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 ml). The mixture was sonicated at 333 K, until TLC showed full conversion of aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH to give (E)-1-bromo-4-(2-nitroprop-1-enyl)benzene. Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (sp) and refined using a riding model, with Uiso(H) = 1.2eq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound (I) with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound (I) viewed down the a axis.
(E)-1-Bromo-4-(2-nitroprop-1-enyl)benzene top
Crystal data top
C9H8BrNO2Z = 2
Mr = 242.07F(000) = 240
Triclinic, P1Dx = 1.728 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9787 (5) ÅCell parameters from 3184 reflections
b = 7.4123 (5) Åθ = 3.1–27.4°
c = 9.7659 (6) ŵ = 4.38 mm1
α = 105.435 (2)°T = 296 K
β = 95.087 (2)°Platelet, yellow
γ = 104.323 (2)°0.21 × 0.19 × 0.08 mm
V = 465.31 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2112 independent reflections
Radiation source: rolling anode1303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 98
Tmin = 0.388, Tmax = 0.703l = 1212
4605 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.012P)2 + 0.950P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2112 reflectionsΔρmax = 0.46 e Å3
120 parametersΔρmin = 0.71 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0149 (13)
Crystal data top
C9H8BrNO2γ = 104.323 (2)°
Mr = 242.07V = 465.31 (5) Å3
Triclinic, P1Z = 2
a = 6.9787 (5) ÅMo Kα radiation
b = 7.4123 (5) ŵ = 4.38 mm1
c = 9.7659 (6) ÅT = 296 K
α = 105.435 (2)°0.21 × 0.19 × 0.08 mm
β = 95.087 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2112 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1303 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.703Rint = 0.027
4605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.00Δρmax = 0.46 e Å3
2112 reflectionsΔρmin = 0.71 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.90197 (7)0.24927 (9)0.09032 (5)0.0754 (2)
N10.2076 (6)0.2311 (6)0.7592 (4)0.0660 (10)
O10.2341 (5)0.2609 (6)0.8891 (4)0.0937 (12)
O20.0411 (5)0.1719 (7)0.6875 (4)0.1038 (14)
C80.3870 (6)0.2659 (6)0.6875 (4)0.0514 (9)
C10.7334 (6)0.2408 (6)0.2327 (4)0.0567 (10)
C50.4097 (6)0.1824 (7)0.2989 (4)0.0631 (12)
H50.27120.14560.27200.076*
C70.3513 (6)0.2154 (7)0.5461 (4)0.0594 (11)
H70.21650.16330.50510.071*
C40.4907 (6)0.2283 (6)0.4430 (4)0.0524 (10)
C30.6976 (6)0.2770 (8)0.4767 (5)0.0776 (15)
H30.75690.30550.57200.093*
C90.5777 (7)0.3501 (9)0.7900 (5)0.0825 (16)
H9A0.63490.24760.79870.099*
H9B0.55280.41650.88250.099*
H9C0.66940.44090.75550.099*
C20.8179 (6)0.2840 (8)0.3723 (5)0.0742 (14)
H20.95650.31830.39760.089*
C60.5299 (6)0.1901 (7)0.1943 (4)0.0680 (13)
H60.47270.16090.09850.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0560 (3)0.1058 (5)0.0598 (3)0.0136 (2)0.0153 (2)0.0237 (3)
N10.055 (2)0.081 (3)0.055 (2)0.0147 (19)0.0103 (18)0.014 (2)
O10.076 (2)0.142 (4)0.056 (2)0.019 (2)0.0205 (17)0.025 (2)
O20.0467 (19)0.173 (4)0.074 (2)0.017 (2)0.0114 (17)0.020 (2)
C80.045 (2)0.056 (3)0.050 (2)0.0112 (18)0.0092 (17)0.0142 (19)
C10.052 (2)0.066 (3)0.052 (2)0.013 (2)0.0100 (19)0.019 (2)
C50.042 (2)0.087 (3)0.050 (2)0.012 (2)0.0015 (18)0.012 (2)
C70.043 (2)0.077 (3)0.051 (2)0.015 (2)0.0032 (17)0.012 (2)
C40.042 (2)0.064 (3)0.048 (2)0.0140 (19)0.0039 (16)0.013 (2)
C30.050 (2)0.134 (5)0.044 (2)0.024 (3)0.0013 (19)0.022 (3)
C90.052 (3)0.122 (5)0.055 (3)0.008 (3)0.003 (2)0.015 (3)
C20.038 (2)0.123 (4)0.055 (3)0.018 (2)0.0015 (19)0.022 (3)
C60.047 (2)0.103 (4)0.045 (2)0.013 (2)0.0013 (18)0.017 (2)
Geometric parameters (Å, º) top
Br1—C11.902 (4)C7—C41.466 (5)
N1—O21.214 (5)C7—H70.9300
N1—O11.217 (4)C4—C31.385 (6)
N1—C81.488 (5)C3—C21.380 (6)
C8—C71.314 (5)C3—H30.9300
C8—C91.478 (6)C9—H9A0.9600
C1—C21.357 (6)C9—H9B0.9600
C1—C61.366 (6)C9—H9C0.9600
C5—C61.381 (6)C2—H20.9300
C5—C41.388 (5)C6—H60.9300
C5—H50.9300
O2—N1—O1122.1 (4)C5—C4—C7117.7 (4)
O2—N1—C8119.7 (4)C2—C3—C4121.6 (4)
O1—N1—C8118.2 (4)C2—C3—H3119.2
C7—C8—C9130.9 (4)C4—C3—H3119.2
C7—C8—N1115.8 (4)C8—C9—H9A109.5
C9—C8—N1113.2 (3)C8—C9—H9B109.5
C2—C1—C6120.5 (4)H9A—C9—H9B109.5
C2—C1—Br1119.2 (3)C8—C9—H9C109.5
C6—C1—Br1120.3 (3)H9A—C9—H9C109.5
C6—C5—C4121.6 (4)H9B—C9—H9C109.5
C6—C5—H5119.2C1—C2—C3119.9 (4)
C4—C5—H5119.2C1—C2—H2120.0
C8—C7—C4130.1 (4)C3—C2—H2120.0
C8—C7—H7115.0C1—C6—C5119.5 (4)
C4—C7—H7115.0C1—C6—H6120.2
C3—C4—C5116.9 (4)C5—C6—H6120.2
C3—C4—C7125.4 (4)
O2—N1—C8—C74.8 (6)C8—C7—C4—C5173.5 (5)
O1—N1—C8—C7174.2 (5)C5—C4—C3—C21.5 (8)
O2—N1—C8—C9176.1 (5)C7—C4—C3—C2179.4 (5)
O1—N1—C8—C94.9 (6)C6—C1—C2—C30.1 (8)
C9—C8—C7—C40.7 (9)Br1—C1—C2—C3179.5 (4)
N1—C8—C7—C4179.7 (4)C4—C3—C2—C10.6 (8)
C6—C5—C4—C31.8 (7)C2—C1—C6—C50.2 (8)
C6—C5—C4—C7179.8 (4)Br1—C1—C6—C5179.2 (4)
C8—C7—C4—C38.7 (8)C4—C5—C6—C11.1 (8)

Experimental details

Crystal data
Chemical formulaC9H8BrNO2
Mr242.07
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9787 (5), 7.4123 (5), 9.7659 (6)
α, β, γ (°)105.435 (2), 95.087 (2), 104.323 (2)
V3)465.31 (5)
Z2
Radiation typeMo Kα
µ (mm1)4.38
Crystal size (mm)0.21 × 0.19 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.388, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
4605, 2112, 1303
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.00
No. of reflections2112
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.71

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBoelle, J., Schneider, R., Gerardin, P., Loubinoux, B., Maienfish, P. & Rindlisbacher, A. (1998). Pestic. Sci. 54, 304–307.  CrossRef CAS Google Scholar
First citationBoys, D., Manríquez, V. & Cassels, B. K. (1993). Acta Cryst. C49, 387–388.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMugnoli, A., Pani, M., Carnasciali, M. M. & Speranza, G. (1991). Z. Kristallogr. 196, 291–293.  CrossRef CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVallejos, G., Fierro, A., Rezende, M. C., Sepulveda-Boza, S. & Reyes-Parada, M. (2005). Bioorg. Med. Chem. 13, 4450–4457.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds