metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-oxido-tetra­kis{dioxido[3-(2-pyrid­yl)-1H-pyrazole]molybdenum(VI)}

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, and bAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 28 July 2009; accepted 11 August 2009; online 15 August 2009)

In the title compound, [Mo4O12(C8H7N3)4], the MoVI ion has a distorted octa­hedral coordination completed by two terminal O atoms, two μ-oxide atoms and two N atoms from one 3-(2-pyrid­yl)-1H-pyrazole ligand. It is noteworthy that in the tetranuclear unit ([\overline4] symmetry), any three MoVI atoms define a plane, and the fourth lies 1.8 (1) Å out of that plane. The degree of linearity of the oxide bridges between two Mo atoms is 175.38 (13)°. Moreover, the N—H group forms an intra­molecular hydrogen bond (four per mol­ecule).

Related literature

For the properties and potential medical applications of polyoxometalate clusters, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-38.]); Khenkin & Neumann (2008[Khenkin, A. M. & Neumann, R. (2008). J. Am. Chem. Soc. 130, 14474-14476.]); Zhang et al. (2006[Zhang, X. T., Wang, D. Q., Dou, J. M., Yan, S. S., Yao, X. X. & Jang, J. Z. (2006). Inorg. Chem. 45, 10629-10635.], 2007[Zhang, X. T., Dou, J. M., Wang, D. Q., Zhou, Y., Zhang, Y. X., Li, R. J., Yan, S. S., Ni, Z. H. & Jiang, J. Z. (2007). Cryst. Growth Des. 7, 1699-1705.], 2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]). For Mo—O and Mo—N distances, see: Rana et al. (2003[Rana, A., Dinda, R., Ghosh, S. & Blake, A. J. (2003). Polyhedron, 22, 3075-3082.]). For general background, see: Mezei et al. (2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo4O12(C8H7N3)4]

  • Mr = 1156.42

  • Tetragonal, P 42 /n

  • a = 14.4412 (16) Å

  • c = 9.094 (2) Å

  • V = 1896.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.898

  • 7579 measured reflections

  • 1675 independent reflections

  • 1316 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.00

  • 1675 reflections

  • 139 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1A⋯O2i 0.94 (5) 1.86 (5) 2.783 (4) 168 (4)
Symmetry code: (i) [y, -x+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalate clusters has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application (Pope et al.; Khenkin et al.; Zhang et al. (2007); Zhang et al. (2006); Zhang et al. (2009). In the present paper, we describe the synthesis and structural characterization of tetrakis((µ-oxo)-bis(3-(2-pyridyl)pyrazole)molybdenum(vi)).

In the asymmetric unit of complex I, there exhibit one 3-(2-pyridyl)pyrazole ligand and one molybdenum oxide MoVIO3, Fig. 1. The MoVI ion surrounded by one 3-(2-pyridyl)pyrazole ligand is hexa-coordinated by four oxygen atoms and two nitrogen atoms, with distorted octahedral coordination sphere. The bond distances of Mo—O and Mo—N are in the normal range compared to the reported complexes containing the N—Mo—O atoms (Rana et al.). It is worthy noting that the simple basic Mo3HL units are assembled to form one 8-MC-4 complex, which could be described as `folded' with two adjacent Mo3 planes forming a dihedral angle of about 38.65°. Moreover, the N—H group forms a very nice intramolecular hydrogen bond (4 per molecule), shown in Fig. 2.

Related literature top

For the properties and potential medical applications of polyoxometalate clusters, see: Pope et al. (1991); Khenkin et al. (2008); Zhang et al. (2006, 2007, 2009). For Mo—O and Mo—N distances, see: Rana et al. (2003). For related literature, see: Mezei et al. (2007);

Zhang et al. (2006).

Experimental top

A mixture of 3-(2-pyridyl)pyrazole (1 mmoL) and molybdenum trioxide (1 mmoL) in 10 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colourless crystals suitable for an X-ray experiment were obtained. Anal. Calc. for C32H28Mo4N12O12: C 33.22, H 1.90, N 14.53%; Found: C 33.13, H 1.79, N 14.32%.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with C—H = 0.93 Å and Uiso = 1.2Ueq (C) for aromatic atoms. The H atom on nitrogen was located from difference density maps and was refined with a distance restraint of N–H = 0.97 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound with the hydrogen bonds of N2—H1A···O2.
Tetra-µ-oxido-tetrakis{dioxido[3-(2-pyridyl)-1H-pyrazole]molybdenum(VI)} top
Crystal data top
[Mo4O12(C8H7N3)4]Dx = 2.025 Mg m3
Mr = 1156.42Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 1675 reflections
Hall symbol: -P 4bcθ = 2.0–25.0°
a = 14.4412 (16) ŵ = 1.37 mm1
c = 9.094 (2) ÅT = 298 K
V = 1896.6 (5) Å3Block, colourless
Z = 20.12 × 0.10 × 0.08 mm
F(000) = 1136
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1675 independent reflections
Radiation source: fine-focus sealed tube1316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1716
Tmin = 0.853, Tmax = 0.898k = 1217
7579 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0295P)2 + 2.0306P]
where P = (Fo2 + 2Fc2)/3
1675 reflections(Δ/σ)max = 0.001
139 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
[Mo4O12(C8H7N3)4]Z = 2
Mr = 1156.42Mo Kα radiation
Tetragonal, P42/nµ = 1.37 mm1
a = 14.4412 (16) ÅT = 298 K
c = 9.094 (2) Å0.12 × 0.10 × 0.08 mm
V = 1896.6 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1675 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1316 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.898Rint = 0.036
7579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.35 e Å3
1675 reflectionsΔρmin = 0.35 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.642839 (18)0.904662 (19)0.19761 (3)0.02233 (12)
N10.61994 (19)0.90081 (18)0.4404 (3)0.0257 (6)
N20.6811 (2)0.8938 (2)0.5516 (3)0.0311 (7)
N30.4862 (2)0.8976 (2)0.2532 (3)0.0314 (7)
O10.76035 (15)0.88536 (16)0.2362 (2)0.0302 (5)
O20.61894 (17)0.86807 (17)0.0193 (3)0.0359 (6)
O30.63381 (18)1.02324 (17)0.1907 (3)0.0370 (6)
C10.6375 (3)0.8821 (3)0.6815 (4)0.0345 (9)
H10.66560.87650.77310.041*
C20.5439 (3)0.8800 (2)0.6536 (4)0.0354 (9)
H2A0.49630.87260.72150.042*
C30.5355 (2)0.8917 (2)0.4995 (4)0.0283 (8)
C40.4595 (2)0.8907 (2)0.3953 (4)0.0321 (8)
C50.3667 (3)0.8828 (2)0.4346 (5)0.0413 (10)
H50.34920.87960.53290.050*
C60.3014 (3)0.8798 (3)0.3248 (5)0.0519 (11)
H60.23910.87240.34770.062*
C70.3291 (3)0.8878 (3)0.1802 (5)0.0504 (11)
H70.28530.88700.10540.060*
C80.4208 (3)0.8969 (3)0.1471 (5)0.0423 (10)
H80.43860.90270.04920.051*
H1A0.746 (3)0.894 (3)0.540 (5)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02453 (18)0.02550 (18)0.01698 (17)0.00112 (12)0.00115 (11)0.00047 (12)
N10.0347 (15)0.0237 (14)0.0187 (14)0.0010 (12)0.0011 (12)0.0010 (11)
N20.0367 (17)0.0338 (16)0.0227 (16)0.0002 (14)0.0014 (13)0.0026 (13)
N30.0298 (16)0.0315 (16)0.0328 (16)0.0037 (13)0.0038 (13)0.0050 (13)
O10.0245 (12)0.0387 (14)0.0273 (13)0.0000 (11)0.0026 (10)0.0028 (11)
O20.0466 (15)0.0403 (14)0.0209 (13)0.0016 (12)0.0022 (11)0.0006 (11)
O30.0448 (15)0.0294 (13)0.0368 (15)0.0040 (11)0.0047 (12)0.0037 (11)
C10.044 (2)0.039 (2)0.0201 (19)0.0018 (17)0.0019 (16)0.0017 (16)
C20.041 (2)0.034 (2)0.031 (2)0.0022 (17)0.0135 (17)0.0045 (16)
C30.0357 (19)0.0203 (17)0.0289 (19)0.0051 (14)0.0086 (16)0.0006 (14)
C40.036 (2)0.0216 (17)0.039 (2)0.0017 (15)0.0111 (17)0.0006 (16)
C50.034 (2)0.035 (2)0.055 (3)0.0049 (17)0.0090 (19)0.0055 (19)
C60.033 (2)0.055 (3)0.067 (3)0.0006 (19)0.002 (2)0.003 (2)
C70.033 (2)0.067 (3)0.051 (3)0.005 (2)0.010 (2)0.007 (2)
C80.036 (2)0.046 (2)0.044 (2)0.0043 (18)0.0021 (18)0.0070 (19)
Geometric parameters (Å, º) top
Mo1—O31.719 (2)C1—C21.375 (5)
Mo1—O21.740 (2)C1—H10.9300
Mo1—O11.755 (2)C2—C31.416 (5)
Mo1—O1i2.207 (2)C2—H2A0.9300
Mo1—N12.233 (3)C3—C41.449 (5)
Mo1—N32.320 (3)C4—C51.392 (5)
N1—C31.340 (4)C5—C61.374 (6)
N1—N21.346 (4)C5—H50.9300
N2—C11.349 (4)C6—C71.379 (6)
N2—H1A0.94 (5)C6—H60.9300
N3—C81.350 (5)C7—C81.364 (6)
N3—C41.353 (5)C7—H70.9300
O1—Mo1ii2.207 (2)C8—H80.9300
O3—Mo1—O2104.69 (12)N2—C1—C2107.4 (3)
O3—Mo1—O1103.82 (11)N2—C1—H1126.3
O2—Mo1—O1109.26 (11)C2—C1—H1126.3
O3—Mo1—O1i159.53 (10)C1—C2—C3105.4 (3)
O2—Mo1—O1i86.03 (10)C1—C2—H2A127.3
O1—Mo1—O1i88.51 (13)C3—C2—H2A127.3
O3—Mo1—N192.85 (10)N1—C3—C2109.3 (3)
O2—Mo1—N1152.17 (11)N1—C3—C4115.3 (3)
O1—Mo1—N186.65 (10)C2—C3—C4135.3 (3)
O1i—Mo1—N171.30 (9)N3—C4—C5121.7 (4)
O3—Mo1—N388.74 (11)N3—C4—C3114.1 (3)
O2—Mo1—N389.78 (11)C5—C4—C3124.2 (3)
O1—Mo1—N3153.15 (10)C6—C5—C4118.4 (4)
O1i—Mo1—N373.68 (9)C6—C5—H5120.8
N1—Mo1—N368.85 (10)C4—C5—H5120.8
C3—N1—N2106.7 (3)C5—C6—C7119.5 (4)
C3—N1—Mo1122.3 (2)C5—C6—H6120.3
N2—N1—Mo1130.4 (2)C7—C6—H6120.3
N1—N2—C1111.2 (3)C8—C7—C6120.0 (4)
N1—N2—H1A124 (3)C8—C7—H7120.0
C1—N2—H1A124 (3)C6—C7—H7120.0
C8—N3—C4118.9 (3)N3—C8—C7121.4 (4)
C8—N3—Mo1121.8 (3)N3—C8—H8119.3
C4—N3—Mo1119.3 (2)C7—C8—H8119.3
Mo1—O1—Mo1ii175.38 (13)
Symmetry codes: (i) y+3/2, x, z+1/2; (ii) y, x+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1A···O2ii0.94 (5)1.86 (5)2.783 (4)168 (4)
Symmetry code: (ii) y, x+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo4O12(C8H7N3)4]
Mr1156.42
Crystal system, space groupTetragonal, P42/n
Temperature (K)298
a, c (Å)14.4412 (16), 9.094 (2)
V3)1896.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.853, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
7579, 1675, 1316
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.00
No. of reflections1675
No. of parameters139
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1A···O2i0.94 (5)1.86 (5)2.783 (4)168 (4)
Symmetry code: (i) y, x+3/2, z+1/2.
 

Acknowledgements

Financial support from the Natural Science Foundation of China (grant No. 20171028, 20325105), the National Ministry of Science and Technology of China (grant No. 2001CB6105-07) and the Ministry of Education of China, Shandong University, is gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhenkin, A. M. & Neumann, R. (2008). J. Am. Chem. Soc. 130, 14474–14476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationRana, A., Dinda, R., Ghosh, S. & Blake, A. J. (2003). Polyhedron, 22, 3075–3082.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Dou, J. M., Wang, D. Q., Zhou, Y., Zhang, Y. X., Li, R. J., Yan, S. S., Ni, Z. H. & Jiang, J. Z. (2007). Cryst. Growth Des. 7, 1699–1705.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wang, D. Q., Dou, J. M., Yan, S. S., Yao, X. X. & Jang, J. Z. (2006). Inorg. Chem. 45, 10629–10635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds