research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of rac-2-[2-(4-chloro­phen­yl)-3,4-di­hydro-2H-1-benzo­pyran-4-yl­­idene]hydrazine-1-carbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Nagaland University, Hqtrs: Lumami, Nagaland-798627, India, and bSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India
*Correspondence e-mail: prabha7chem@gmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 11 February 2019; accepted 13 April 2019; online 25 April 2019)

In the title compound, C16H14N3OSCl, a Schiff base derivative of a thio­semicarbazide with a flavanone, the 4-chlorophenyl ring is inclined to the benzene ring of the chromane ring system by 30.72 (12)°. The pyran ring has an envelope conformation with the methine C atom as the flap. The mean plane of the thio­urea unit is twisted with respect to the benzene ring of the chromanone ring system, subtending a dihedral angle of 19.78 (19)°. In the crystal, mol­ecules are linked by two pairs of N—H⋯S hydrogen bonds, forming inversion dimers enclosing R22(8) ring motifs, which are linked to form ribbons propagating along the b-axis direction. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis.

1. Chemical context

Flavanones, a subclass of flavonoids, are widely recognized for their nutraceutical values (Testai & Calderone, 2017[Testai, L. & Calderone, V. (2017). Nutrients 9, 502-514.]). Flavanones are also known for their potential bioactivities against cancer (Bauvois et al., 2003[Bauvois, B., Puiffe, M.-L., Bongui, J.-B., Paillat, S., Monneret, C. & Dauzonne, D. (2003). J. Med. Chem. 46, 3900-3913.]). Thio­semicarbazides are a class of versatile ligands exhibiting important physicochemical properties due to their π-delocalization and flexibility of coordination modes. Therefore, a combination of flavanones and thio­semicarbazides may lead to compounds having synergistic properties of both classes of compounds. Schiff base derivatives of thio­semicarbazides have been studied for their biological and pharmacological properties (Bai et al., 2017[Bai, J., Wang, R.-H., Qiao, Y., Wang, A. & Fang, C.-J. (2017). Drug Des. Dev. Ther. 11, 2227-2237.]). However, Schiff base derivatives of flavanones with thio­semicarbazides have not been explored extensively (Brodowska et al., 2016[Brodowska, K., Sykuła, A., Garribba, E., Łodyga-Chruścińska, E. & Sójka, M. (2016). Transition Met. Chem. 41, 179-189.]; Bargujar et al., 2018[Bargujar, S., Chandra, S., Chauhan, R., Rajor, H. K. & Bhardwaj, J. (2018). Appl. Organomet. Chem. 32, e4149-e4162.]). In particular, structurally characterized flavanone–thio­semicarbazone Schiff bases are rare in the literature. The presence of NH and S moieties in such compounds opens up the possibility of studying the role of the comparatively less explored class of N—H⋯S inter­actions in building supra­molecular architectures. This is of inter­est as hydrogen bonding to sulfur is known to play an important role in biological systems (Andersen et al., 2014[Andersen, C. L., Jensen, C. S., Mackeprang, K., Du, L., Jørgensen, S. & Kjaergaard, H. G. (2014). J. Phys. Chem. A, 118, 11074-11082.]; Walters et al., 2005[Walters, M. A., Roche, C. L., Rheingold, A. L. & Kassel, S. W. (2005). Inorg. Chem. 44, 3777-3779.]). Considering the above, we have synthesized the title compound through a Schiff base condensation reaction, and report herein on its crystal structure and the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The 4-chloro­phenyl ring (C11–C16) is inclined to the benzene ring (C5–C10) of the chromanone ring system by 30.72 (12)°. The pyran ring (O1/C2–C5/C10) has an envelope conformation with atom C2 as the flap, being displaced by 0.655 (2) Å from the mean plane through the other five atoms of the ring. The mean plane of the thio­urea unit (N2/C17/S1/N3) is twisted with respect to benzene ring (C5-C10) of the chromane ring system, forming a dihedral angle of 19.78 (19)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The orientation of the fiigure means that one of the two H atoms on C3 is not shown.

3. Supra­molecular features

A strong hydrogen bond often involves highly electronegative second row elements such as N, O and F. However, the less electronegative third row elements (P, S and Cl) are also known to take part in hydrogen-bonding inter­actions. In the crystal of the title compound, mol­ecules are linked by two pairs of N—H⋯S hydrogen bonds, forming inversion dimers enclosing R22(8) ring motifs, which are linked to form ribbons propagating along the b-axis direction (Table 1[link] and Fig. 2[link]). In the crystal, there are no other significant short inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.85 (3) 2.65 (3) 3.480 (2) 167 (2)
N3—H3BN⋯S1ii 0.88 (3) 2.52 (3) 3.392 (2) 171 (2)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y, -z+2.
[Figure 2]
Figure 2
A view normal to plane (101) of the crystal packing of the title compound. The N—H⋯S hydrogen bonds are shown as dashed lines (Table 1[link]). For clarity, C-bound H atoms have been omitted.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots for the title compound

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). A recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) `outlines the various procedures and what can be learned by using CrystalExplorer'.

The Hirshfeld surface of the title compound mapped over dnorm is given in Fig. 3[link]a. The red spots indicate specific points of contact in the crystal. The Hirshfeld surface mapped over the shape-index is given in Fig. 3[link]b, showing red spots and blue regions indicative of possible C⋯H/H⋯C (i.e. C—H⋯π) contacts. The Hirshfeld surface mapped over the curvedness is given in Fig. 3[link]c. Here the region around the chromane ring system is fairly flat, indicative of possible ππ inter­actions. However, these inter­actions must be extremely weak as analysis of the structure using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) did not indicate the presence of any significant C—H⋯π or offset ππ inter­actions in the crystal.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over (a) dnorm, −0.3525 to 1.4929 arbitrary units, (b) shape-index and (c) curvedness.

The full two-dimensional fingerprint plot for the title compound is given in Fig. 4[link]a. The principal inter­molecular inter­actions (Fig. 4[link]b–4f) are delineated into H⋯H (38.9%), C⋯H/H⋯C (20.3%), S⋯H/H⋯S (13.1%), Cl⋯H/H⋯Cl (12.0%) and N⋯H/H⋯N (3.0%) contacts. Note that only for the H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts is de + di (where de and di are the distances from a given point on the surface to the nearest atom outside and inside, respectively), less than the sum of the van der Waals radii of the individual atoms.

[Figure 4]
Figure 4
(a) The full two-dimensional fingerprint plot for the title compound and fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S, (e) Cl⋯H/H⋯Cl and (f) N⋯H/H⋯N contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a similar structure gave one hit, the compound 2′[(2-(4-fluoro­phen­yl)chroman-4-yl­idene]isonicotinohydrazide (CSD refcode TEJQUV; Nie et al., 2006[Nie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824-o1825.]). Here, the pyran ring has an envelope conformation and the 4-fluoro­phenyl ring is inclined to the benzene ring of the chromane ring system by 66.57 (11)°. In the title compound, the pyran ring also has an envelope conformation and the 4-chloro­pheny ring is inclined to the benzene ring of the chromane ring system by only 30.72 (12)°.

A search for the 2-(tetra­hydro-4H-pyran-4-yl­idene)hydrazine-1-carbo­thio­amide skeleton gave one hit, viz. (E)-2-[2,6-bis­(4-chloro­phen­yl)-3,5-di­methyl­tetra­hydro-4H-pyran-4-yl­idene]hydrazinecarbo­thio­amide (UQAWAL; Umamatheswari et al., 2011[Umamatheswari, S., Pratha, J. J. & Kabilan, S. (2011). J. Mol. Struct. 989, 1-9.]). Here, the pyran ring has a chair conformation and the bond lengths and angles of the hydrazinecarbo­thio­amide unit are similar to those in the title compound.

6. Synthesis and crystallization

The synthesis of the title compound was achieved by following a reported procedure with some modifications (Bargale et al., 1988[Bargale, S. & Shastry, V. R. (1988). Orient. J. Chem. 4, 53-57.]). Conc. H2SO4 (10 mol %) in ethanol (5 ml) was added to a stirred solution of 2-(4-chloro­phen­yl)-chroman-4-one (0.258 g, 1 mmol) (Zheng et al., 2013[Zheng, X., Jiang, H., Xie, J., Yin, Z. & Zhang, H. (2013). Synth. Commun. 43, 1023-1029.]) and thio­semicarbazide (0.091 g, 1 mmol). The mixture was refluxed for 96 h with continuous stirring. After completion of the reaction, as monitored by TLC, the solvent was removed under reduce pressure and then ice-cold water was added. The resulting solid product was collected by filtration, washed with water (3–4 times) and finally with hexane and then dried at room temperature. Pale-yellow plate-like crystals of the title compound were obtained by slow evaporation at room temperature of a solution in aceto­nitrile (yield 90%, m.p. 483-486 K). IR (KBr, cm−1): 3417, 3245, 3152, 2984, 2888, 2790, 1598, 1512, 1454, 1298, 1250, 1089, 1077, 883, 766, 507, 498. 1H NMR (400 MHz, DMSO-d6), δ ppm: 10.47 (s, 1H, NH), 8.32 (d, 2H, J = 6.50 Hz, NH2); 8.13 (s, 1H, Ar-H); 7.54 (dd, 4H, J = 8.41 Hz, Ar-H); 7.35–7.31 (m, 1H, Ar-H); 7.02–6.97 (m, 2H, Ar-H); 5.25 (dd, 1H, J = 2.36, 2.40 Hz, CH); 2.79 (dd, 1H, J = 12.10, 12.0 Hz, CH2); 2.51 (s, 1H, CH2).13C NMR (300 MHz, DMSO-d6), δ ppm: 178.84; 156.71; 141.71; 138.79; 132.76; 131.24; 128.44; 128.27; 125.49; 121.48; 120.10; 117.47; 75.41; 31.83. Analysis calculated for C16H14N3OSCl: C, 57.91; H, 4.25; N, 12.66; S, 9.66. Found: C, 57.85; H, 4.28; N, 12.61; S, 9.59.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH and NH2 H atoms were located in a difference-Fourier map and refined freely. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C16H14ClN3OS
Mr 331.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.8218 (7), 8.4207 (6), 12.3402 (11)
α, β, γ (°) 99.838 (7), 95.771 (7), 96.515 (7)
V3) 789.66 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.41
Crystal size (mm) 0.50 × 0.17 × 0.10
 
Data collection
Diffractometer Rigaku OD, SuperNova, Dual, Cu at zero, Eos
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.464, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4478, 2766, 2346
Rint 0.019
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.05
No. of reflections 2766
No. of parameters 211
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.41
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/03 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2018/03 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/03 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), SHELXL2018/03 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

rac-2-[2-(4-Chlorophenyl)-3,4-dihydro-2H-1-benzopyran-4-ylidene]hydrazine-1-carbothioamide top
Crystal data top
C16H14ClN3OSZ = 2
Mr = 331.81F(000) = 344
Triclinic, P1Dx = 1.395 Mg m3
a = 7.8218 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.4207 (6) ÅCell parameters from 2014 reflections
c = 12.3402 (11) Åθ = 3.7–66.5°
α = 99.838 (7)°µ = 3.41 mm1
β = 95.771 (7)°T = 293 K
γ = 96.515 (7)°Plate, yellow
V = 789.66 (12) Å30.50 × 0.17 × 0.10 mm
Data collection top
Rigaku OD, SuperNova, Dual, Cu at zero, Eos
diffractometer
2346 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.019
ω scansθmax = 66.7°, θmin = 3.7°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
h = 99
Tmin = 0.464, Tmax = 1.000k = 107
4478 measured reflectionsl = 1414
2766 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.1825P]
where P = (Fo2 + 2Fc2)/3
2766 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03040 (9)0.27189 (6)1.04983 (4)0.0560 (2)
Cl10.63580 (11)1.37767 (8)0.85742 (7)0.0909 (3)
O10.2996 (2)0.65276 (19)0.57103 (12)0.0597 (4)
N10.1205 (2)0.3125 (2)0.75055 (14)0.0492 (4)
N20.1066 (3)0.3537 (2)0.86177 (14)0.0492 (4)
H2N0.089 (3)0.448 (3)0.892 (2)0.061 (7)*
N30.0872 (4)0.0835 (2)0.86608 (18)0.0689 (6)
H3AN0.115 (4)0.073 (3)0.800 (3)0.076 (9)*
H3BN0.062 (3)0.002 (3)0.896 (2)0.074 (8)*
C20.3685 (3)0.6714 (3)0.68520 (18)0.0499 (5)
H20.4677220.6103980.6895330.060*
C30.2332 (3)0.6009 (3)0.74971 (17)0.0493 (5)
H3A0.2817820.6101100.8263540.059*
H3B0.1348160.6613550.7482040.059*
C40.1747 (3)0.4250 (2)0.69944 (17)0.0450 (4)
C50.1826 (3)0.3784 (3)0.58006 (16)0.0474 (5)
C60.1305 (3)0.2204 (3)0.52088 (19)0.0606 (6)
H60.0916780.1392290.5584880.073*
C70.1353 (3)0.1822 (3)0.4087 (2)0.0681 (7)
H70.1042310.0754120.3714560.082*
C80.1866 (3)0.3031 (4)0.35112 (19)0.0650 (7)
H80.1867520.2781430.2747510.078*
C90.2373 (3)0.4599 (3)0.40644 (19)0.0607 (6)
H90.2694570.5413540.3673670.073*
C100.2406 (3)0.4967 (3)0.52061 (17)0.0500 (5)
C110.4330 (3)0.8494 (3)0.72737 (18)0.0506 (5)
C120.4111 (3)0.9656 (3)0.6620 (2)0.0604 (6)
H120.3528870.9347760.5905880.073*
C130.4752 (3)1.1273 (3)0.7020 (2)0.0668 (7)
H130.4608761.2046850.6575350.080*
C140.5595 (3)1.1727 (3)0.8070 (2)0.0624 (6)
C150.5862 (4)1.0597 (3)0.8729 (2)0.0719 (7)
H150.6458731.0915180.9438060.086*
C160.5233 (4)0.8983 (3)0.8325 (2)0.0682 (7)
H160.5418900.8211230.8765400.082*
C170.0759 (3)0.2312 (2)0.91799 (17)0.0470 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0973 (4)0.0372 (3)0.0360 (3)0.0047 (3)0.0169 (3)0.0114 (2)
Cl10.1088 (6)0.0550 (4)0.1009 (6)0.0103 (4)0.0092 (4)0.0184 (4)
O10.0846 (11)0.0556 (9)0.0446 (8)0.0059 (8)0.0172 (7)0.0219 (7)
N10.0673 (11)0.0448 (9)0.0385 (9)0.0057 (8)0.0134 (8)0.0132 (7)
N20.0761 (12)0.0362 (9)0.0386 (9)0.0049 (8)0.0174 (8)0.0121 (7)
N30.127 (2)0.0374 (10)0.0482 (12)0.0088 (11)0.0328 (12)0.0121 (9)
C20.0547 (11)0.0521 (12)0.0491 (12)0.0100 (9)0.0147 (9)0.0200 (9)
C30.0593 (12)0.0485 (11)0.0438 (11)0.0050 (9)0.0130 (9)0.0163 (9)
C40.0498 (11)0.0480 (11)0.0406 (10)0.0083 (8)0.0092 (8)0.0143 (8)
C50.0500 (11)0.0577 (12)0.0380 (10)0.0090 (9)0.0085 (8)0.0154 (9)
C60.0730 (15)0.0630 (14)0.0427 (12)0.0017 (11)0.0043 (10)0.0101 (10)
C70.0738 (16)0.0771 (17)0.0467 (13)0.0005 (13)0.0025 (11)0.0017 (12)
C80.0578 (13)0.101 (2)0.0356 (11)0.0103 (13)0.0068 (9)0.0095 (12)
C90.0627 (13)0.0833 (17)0.0434 (12)0.0128 (12)0.0161 (10)0.0244 (11)
C100.0519 (11)0.0594 (13)0.0440 (11)0.0128 (9)0.0121 (9)0.0173 (9)
C110.0518 (11)0.0508 (12)0.0546 (12)0.0066 (9)0.0154 (9)0.0198 (10)
C120.0671 (14)0.0556 (13)0.0624 (14)0.0069 (10)0.0047 (11)0.0241 (11)
C130.0729 (15)0.0549 (14)0.0773 (17)0.0061 (11)0.0021 (13)0.0305 (12)
C140.0617 (13)0.0518 (13)0.0755 (16)0.0005 (10)0.0090 (12)0.0208 (11)
C150.0828 (17)0.0661 (16)0.0636 (15)0.0061 (13)0.0029 (13)0.0199 (12)
C160.0828 (17)0.0581 (14)0.0663 (16)0.0004 (12)0.0026 (13)0.0283 (12)
C170.0642 (12)0.0382 (10)0.0407 (10)0.0027 (9)0.0109 (9)0.0129 (8)
Geometric parameters (Å, º) top
S1—C171.687 (2)C5—C61.398 (3)
Cl1—C141.746 (2)C6—C71.372 (3)
O1—C101.361 (3)C6—H60.9300
O1—C21.433 (3)C7—C81.383 (4)
N1—C41.281 (3)C7—H70.9300
N1—N21.375 (2)C8—C91.373 (4)
N2—C171.351 (3)C8—H80.9300
N2—H2N0.85 (3)C9—C101.387 (3)
N3—C171.315 (3)C9—H90.9300
N3—H3AN0.85 (3)C11—C161.385 (3)
N3—H3BN0.88 (3)C11—C121.385 (3)
C2—C111.511 (3)C12—C131.383 (3)
C2—C31.514 (3)C12—H120.9300
C2—H20.9800C13—C141.364 (4)
C3—C41.505 (3)C13—H130.9300
C3—H3A0.9700C14—C151.374 (4)
C3—H3B0.9700C15—C161.381 (4)
C4—C51.468 (3)C15—H150.9300
C5—C101.396 (3)C16—H160.9300
C10—O1—C2114.56 (16)C8—C7—H7120.1
C4—N1—N2118.41 (17)C9—C8—C7120.2 (2)
C17—N2—N1117.54 (17)C9—C8—H8119.9
C17—N2—H2N117.8 (17)C7—C8—H8119.9
N1—N2—H2N122.4 (17)C8—C9—C10120.0 (2)
C17—N3—H3AN117 (2)C8—C9—H9120.0
C17—N3—H3BN121.9 (18)C10—C9—H9120.0
H3AN—N3—H3BN121 (3)O1—C10—C9117.1 (2)
O1—C2—C11107.89 (17)O1—C10—C5121.98 (19)
O1—C2—C3110.01 (18)C9—C10—C5120.9 (2)
C11—C2—C3114.02 (18)C16—C11—C12118.5 (2)
O1—C2—H2108.3C16—C11—C2119.6 (2)
C11—C2—H2108.3C12—C11—C2121.8 (2)
C3—C2—H2108.3C13—C12—C11120.5 (2)
C4—C3—C2109.75 (17)C13—C12—H12119.7
C4—C3—H3A109.7C11—C12—H12119.7
C2—C3—H3A109.7C14—C13—C12119.7 (2)
C4—C3—H3B109.7C14—C13—H13120.1
C2—C3—H3B109.7C12—C13—H13120.1
H3A—C3—H3B108.2C13—C14—C15121.0 (2)
N1—C4—C5117.19 (19)C13—C14—Cl1119.26 (19)
N1—C4—C3126.53 (19)C15—C14—Cl1119.7 (2)
C5—C4—C3116.28 (17)C14—C15—C16119.1 (3)
C10—C5—C6117.4 (2)C14—C15—H15120.4
C10—C5—C4119.36 (19)C16—C15—H15120.4
C6—C5—C4123.21 (19)C15—C16—C11121.0 (2)
C7—C6—C5121.6 (2)C15—C16—H16119.5
C7—C6—H6119.2C11—C16—H16119.5
C5—C6—H6119.2N3—C17—N2117.00 (19)
C6—C7—C8119.7 (2)N3—C17—S1122.99 (17)
C6—C7—H7120.1N2—C17—S1120.00 (16)
C4—N1—N2—C17169.8 (2)C8—C9—C10—C54.0 (3)
C10—O1—C2—C11178.22 (17)C6—C5—C10—O1177.7 (2)
C10—O1—C2—C356.8 (2)C4—C5—C10—O13.8 (3)
O1—C2—C3—C457.2 (2)C6—C5—C10—C93.4 (3)
C11—C2—C3—C4178.59 (17)C4—C5—C10—C9175.0 (2)
N2—N1—C4—C5178.00 (17)O1—C2—C11—C16173.0 (2)
N2—N1—C4—C32.7 (3)C3—C2—C11—C1664.5 (3)
C2—C3—C4—N1150.2 (2)O1—C2—C11—C124.2 (3)
C2—C3—C4—C529.1 (2)C3—C2—C11—C12118.3 (2)
N1—C4—C5—C10179.93 (19)C16—C11—C12—C131.3 (4)
C3—C4—C5—C100.7 (3)C2—C11—C12—C13178.5 (2)
N1—C4—C5—C61.6 (3)C11—C12—C13—C140.5 (4)
C3—C4—C5—C6179.1 (2)C12—C13—C14—C151.8 (4)
C10—C5—C6—C70.2 (4)C12—C13—C14—Cl1178.7 (2)
C4—C5—C6—C7178.2 (2)C13—C14—C15—C161.3 (4)
C5—C6—C7—C82.4 (4)Cl1—C14—C15—C16179.2 (2)
C6—C7—C8—C91.9 (4)C14—C15—C16—C110.5 (4)
C7—C8—C9—C101.3 (4)C12—C11—C16—C151.8 (4)
C2—O1—C10—C9155.12 (19)C2—C11—C16—C15179.1 (2)
C2—O1—C10—C526.0 (3)N1—N2—C17—N39.8 (3)
C8—C9—C10—O1177.1 (2)N1—N2—C17—S1171.68 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.85 (3)2.65 (3)3.480 (2)167 (2)
N3—H3BN···S1ii0.88 (3)2.52 (3)3.392 (2)171 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+2.
 

Acknowledgements

We thank Nagaland University, AMRC– IIT Mandi and the University of Hyderabad for the research facilities.

Funding information

PM is grateful to the SERB–DST, Govt. of India for financial support (grant No. SB/EMEQ-030/2014). RZ also thanks the SERB–DST for financial support.

References

First citationAndersen, C. L., Jensen, C. S., Mackeprang, K., Du, L., Jørgensen, S. & Kjaergaard, H. G. (2014). J. Phys. Chem. A, 118, 11074–11082.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBai, J., Wang, R.-H., Qiao, Y., Wang, A. & Fang, C.-J. (2017). Drug Des. Dev. Ther. 11, 2227–2237.  CrossRef CAS Google Scholar
First citationBargale, S. & Shastry, V. R. (1988). Orient. J. Chem. 4, 53–57.  CAS Google Scholar
First citationBargujar, S., Chandra, S., Chauhan, R., Rajor, H. K. & Bhardwaj, J. (2018). Appl. Organomet. Chem. 32, e4149–e4162.  CrossRef Google Scholar
First citationBauvois, B., Puiffe, M.-L., Bongui, J.-B., Paillat, S., Monneret, C. & Dauzonne, D. (2003). J. Med. Chem. 46, 3900–3913.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrodowska, K., Sykuła, A., Garribba, E., Łodyga-Chruścińska, E. & Sójka, M. (2016). Transition Met. Chem. 41, 179–189.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824–o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTestai, L. & Calderone, V. (2017). Nutrients 9, 502-514.  CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationUmamatheswari, S., Pratha, J. J. & Kabilan, S. (2011). J. Mol. Struct. 989, 1–9.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalters, M. A., Roche, C. L., Rheingold, A. L. & Kassel, S. W. (2005). Inorg. Chem. 44, 3777–3779.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, X., Jiang, H., Xie, J., Yin, Z. & Zhang, H. (2013). Synth. Commun. 43, 1023–1029.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds