research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mol­ecular and crystal structure of methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aSSI "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60, Nauky ave., Kharkiv 61001, Ukraine, bV.N. Karazin Kharkiv National University, 4 Svobody, Kharkiv 61077, Ukraine, and cNational University of Pharmacy, 4 Valentinovska Str., Kharkiv 61168, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 24 July 2018; accepted 9 August 2018; online 21 August 2018)

The title compound, C11H11NO4S, possesses weak analgesic properties and is a source compound for the synthesis of highly active analgesic and anti-inflammatory compounds. The benzo­thia­zine ring adopts a conformation intermediate between twist-boat and sofa. The ester substituent is turned towards the endocyclic double bond because of steric repulsion. In the crystal, the mol­ecules form columns along the [001] direction, bound by N—H⋯O hydrogen bonds and stacking inter­actions.

1. Chemical context

Methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carb­oxyl­ate (I) displays moderate analgesic properties (Azotla-Cruz et al., 2017[Azotla-Cruz, L., Lijanova, I. V., Ukrainets, I. V., Likhanova, N. V., Olivares-Xometl, O. & Bereznyakova, N. L. (2017). Sci. Pharm. 85, 2.]) but has been used for the synthesis of highly active analgesic and anti-inflammatory compounds (Ukrainets et al., 2018[Ukrainets, I. V., Hamza, G. M., Burian, A. A., Shishkina, S. V., Voloshchuk, N. I. & Malchenko, O. V. (2018). Sci. Pharm. 86, 9.]). Earlier it was shown (Ukrainets et al., 2016a[Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V., Grinevich, L. A. & Sim, G. (2016a). Sci. Pharm. 84, 705-714.],b[Ukrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016b). Acta Cryst. C72, 411-415.]) that the biological properties of 2,1-benzo­thia­zine derivatives depend to a considerable degree on their mol­ecular and crystal structures. Thus knowledge of both the mol­ecular and crystal structures of I is very important.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The di­hydro­thia­zine heterocycle adopts a twist-boat conformation with puckering parameters (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) S = 0.57, Θ = 53.3°, Ψ = 25.2°. The S1 and C8 atoms deviate from the mean plane of the remaining ring atoms by 0.7941 (6) and 0.260 (2) Å, respectively. Some steric repulsion between the methyl substituent at the C7 atom and the ester group [the short intra­molecular contact C11⋯O1 is 2.986 (5) Å compared to the van der Waals radii sum of 3.00 Å (Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.])] is compensated for by the formation of the intra­molecular C11—H11C⋯O1 hydrogen bond (Table 1[link]). As a result, the ester substituent is turned relative to the C7=C8 endocyclic double bond [C7=C8—C9—O1 torsion angle is −35.2 (5)°] and the C7=C8 [1.359 (4) Å] and C8—C9 [1.504 (3) Å] bonds are elongated compared to the standard values (Bürgi & Dunitz, 1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-7-84. Weinheim: VCH.]) of 1.326 and 1.455 Å, respect­ively. The methyl group of the ester substituent is in an anti-periplanar conformation relative to the C8—C9 bond [C8—C9—O2—C10 = 174.5 (2)°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯O1 0.96 2.24 2.986 (5) 133
N1—H1N⋯O4i 0.81 (4) 2.09 (4) 2.891 (3) 170 (4)
C4—H4⋯O3ii 0.93 2.55 3.427 (3) 158
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x-1, -y, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of I with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of I form columns along the [001] direction (Fig. 2[link]). Neighboring mol­ecules within the column are linked by the N1—H1N⋯O4i hydrogen bonds (Table 1[link]) and π-stacking inter­actions with centroid–centroid diatances of 3.870 (2) Å. The columns are connected by weak C4—H4⋯O3ii hydrogen bonds (Table 1[link]).

[Figure 2]
Figure 2
The packing showing columns of mol­ecules along the c-axis direction.

4. Database survey

An search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed only three similar 1,2-benzo­thia­zine derivatives with a methyl substituent at the C7 atom (VAZQEV and VAZQIZ, Azotla-Cruz et al., 2017[Azotla-Cruz, L., Lijanova, I. V., Ukrainets, I. V., Likhanova, N. V., Olivares-Xometl, O. & Bereznyakova, N. L. (2017). Sci. Pharm. 85, 2.]; OWUQII, Azotla-Cruz et al., 2016[Azotla-Cruz, L., Shishkina, S., Ukrainets, I., Lijanova, I. & Likhanova, N. (2016). Acta Cryst. E72, 1574-1576.]). All of these compounds are substituted at the nitro­gen atom and have very similar mol­ecular structures. The structure VAZQEV differs from others by the trans-orientation of the carbonyl group of the ester substituent relative to the endocyclic double bond.

4.1. Synthesis and crystallization

Methyl (chloro­sulfon­yl)acetate (1.90 g, 0.011 mol) was added dropwise with stirring to a solution of ortho-amino­aceto­phenone (1.35 g, 0.010 mol) and tri­ethyl­amine (1.54 mL, 0.011 mol) in CH2Cl2 (20 mL) and cooled to 268–273 K. After 10 h, water (50 mL) was added to the reaction mixture, which was then acidified to pH 4 with 1 N HCl and mixed thoroughly. The organic layer was separated off, dried over anhydrous CaCl2, and the solvent distilled (at reduced pressure at the end). The resulting anilide was subjected to heterocyclization without purification. A solution of sodium methyl­ate in anhydrous methanol [from metallic sodium (0.69 g, 0.030 mol) and absolute methanol (15 mL)], the mixture was boiled and then kept for 15 h at room temperature. The reaction mixture was diluted with cold water and acidified with 1 N HCl to pH 4. Finally, the solid ester, I, was separated by filtration, washed with water, and dried in air giving colourless block-shaped crystals, yield: 2.25 g (89%); m.p. 476–578 K (methanol); Rf = 0.37. 1H NMR (400 MHz, DMSO-d6): δ 11.84 (br s, 1H, NH), 7.79 (d, 1H, J = 7.6 Hz, H-5), 7.49 (t, 1H, J = 7.2 Hz, H-7), 7.22 (t, 1H, J = 7.6 Hz, H-6), 7.12 (d, 1H, J = 8.0 Hz, H-8), 3.84 (s, 3H, OCH3), 2.46 (s, 3H, 4-CH3, coincides with the signal of residual protons DMSO-d6). 13C-NMR (100 MHz, DMSO-d6 + CDCl3): δ 161.6 (C=O), 147.7, 138.2, 132.2, 127.4, 127.1, 123.0, 121.3, 118.8, 52.9 (OCH3), 17.5 (4-CH3). MS (m/z, %): 253 [M]+ (4.4), 252 [M − H]+ (1.5), 221 [M − CH3OH]+ (8.4), 195 (80.2), 119 (75.3), 103 (17.0), 93 (100), 92 (59.5), 77 (50.0). Analysis calculated for C11H11NO4S: C, 52.16; H, 4.38; N, 5.53; S 12.66%. Found: C, 52.07; H, 4.30; N, 5.46; S 12.72%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All of the H atoms were located in difference-Fourier maps. The N-bound H atoms were refined isotropically. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.96 Å with Uiso(H) =1.5Ueq(C) for the methyl groups and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for all others.

Table 2
Experimental details

Crystal data
Chemical formula C11H11NO4S
Mr 253.27
Crystal system, space group Monoclinic, Pc
Temperature (K) 293
a, b, c (Å) 7.8367 (3), 9.6842 (4), 7.5006 (4)
β (°) 93.468 (4)
V3) 568.19 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.21 × 0.18 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.809, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5509, 3068, 2803
Rint 0.026
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.04
No. of reflections 3068
No. of parameters 160
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.21
Absolute structure Flack x determined using 1127 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (5)
Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis RED (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

Methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate top
Crystal data top
C11H11NO4SF(000) = 264
Mr = 253.27Dx = 1.480 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 7.8367 (3) ÅCell parameters from 2089 reflections
b = 9.6842 (4) Åθ = 4.2–30.6°
c = 7.5006 (4) ŵ = 0.29 mm1
β = 93.468 (4)°T = 293 K
V = 568.19 (4) Å3Block, colourless
Z = 20.21 × 0.18 × 0.15 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
3068 independent reflections
Radiation source: Enhance (Mo) X-ray Source2803 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.026
ω–scansθmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 1011
Tmin = 0.809, Tmax = 1.000k = 913
5509 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0399P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3068 reflectionsΔρmax = 0.19 e Å3
160 parametersΔρmin = 0.21 e Å3
2 restraintsAbsolute structure: Flack x determined using 1127 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82278 (8)0.16925 (5)0.52933 (8)0.03401 (14)
O10.6143 (4)0.5195 (2)0.4202 (4)0.0679 (7)
O20.8581 (3)0.4555 (2)0.5668 (3)0.0514 (5)
O30.9468 (3)0.2019 (2)0.4041 (3)0.0477 (5)
O40.8846 (2)0.15240 (18)0.7126 (2)0.0416 (4)
N10.7250 (3)0.0322 (2)0.4558 (3)0.0420 (5)
H1N0.780 (5)0.012 (4)0.388 (5)0.064 (11)*
C10.5686 (3)0.0083 (2)0.5189 (3)0.0364 (5)
C20.5276 (4)0.1480 (3)0.5226 (4)0.0459 (6)
H20.60490.21360.48640.055*
C30.3720 (5)0.1882 (3)0.5802 (4)0.0558 (8)
H30.34330.28140.58140.067*
C40.2584 (4)0.0915 (4)0.6361 (4)0.0570 (8)
H40.15500.11980.67860.068*
C50.2967 (4)0.0469 (3)0.6297 (4)0.0469 (6)
H50.21740.11120.66520.056*
C60.4538 (3)0.0927 (3)0.5705 (3)0.0374 (5)
C70.4909 (3)0.2408 (3)0.5508 (3)0.0384 (5)
C80.6512 (3)0.2858 (3)0.5222 (3)0.0365 (5)
C90.7020 (4)0.4337 (3)0.4961 (4)0.0431 (6)
C100.9327 (5)0.5898 (3)0.5392 (5)0.0634 (9)
H10A1.04620.59240.59490.095*
H10B0.86400.65950.59080.095*
H10C0.93750.60660.41340.095*
C110.3470 (5)0.3403 (3)0.5685 (6)0.0599 (10)
H11A0.30550.33310.68600.090*
H11B0.25620.31920.48110.090*
H11C0.38690.43260.54980.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0300 (3)0.0345 (2)0.0379 (3)0.0013 (2)0.0052 (2)0.0017 (2)
O10.0679 (16)0.0430 (11)0.0907 (18)0.0062 (10)0.0134 (14)0.0153 (11)
O20.0499 (13)0.0386 (9)0.0646 (14)0.0088 (9)0.0041 (10)0.0034 (8)
O30.0423 (11)0.0504 (11)0.0519 (12)0.0000 (9)0.0161 (9)0.0048 (9)
O40.0372 (10)0.0453 (10)0.0421 (11)0.0009 (7)0.0014 (8)0.0061 (7)
N10.0383 (12)0.0385 (11)0.0505 (13)0.0010 (9)0.0116 (10)0.0106 (9)
C10.0333 (12)0.0388 (12)0.0367 (13)0.0032 (10)0.0000 (10)0.0034 (9)
C20.0472 (16)0.0391 (13)0.0508 (16)0.0035 (11)0.0007 (13)0.0006 (11)
C30.059 (2)0.0488 (16)0.059 (2)0.0186 (14)0.0022 (15)0.0046 (12)
C40.0461 (17)0.072 (2)0.0530 (17)0.0189 (15)0.0062 (13)0.0059 (15)
C50.0349 (13)0.0617 (17)0.0444 (15)0.0021 (12)0.0040 (12)0.0013 (12)
C60.0323 (12)0.0426 (13)0.0369 (12)0.0005 (10)0.0004 (9)0.0029 (9)
C70.0328 (12)0.0405 (13)0.0416 (13)0.0036 (10)0.0010 (10)0.0047 (10)
C80.0370 (13)0.0343 (11)0.0383 (13)0.0052 (9)0.0010 (10)0.0012 (9)
C90.0474 (15)0.0347 (12)0.0469 (16)0.0045 (11)0.0004 (13)0.0027 (10)
C100.069 (2)0.0425 (17)0.078 (2)0.0173 (15)0.0017 (18)0.0029 (15)
C110.0372 (17)0.0518 (15)0.091 (3)0.0120 (13)0.0055 (18)0.0072 (15)
Geometric parameters (Å, º) top
S1—O31.4271 (19)C1—C61.400 (3)
S1—O41.4391 (19)C2—C31.375 (5)
S1—N11.613 (2)C3—C41.375 (5)
S1—C81.754 (3)C4—C51.375 (4)
O1—C91.199 (4)C5—C61.406 (4)
O2—C91.321 (4)C6—C71.472 (4)
O2—C101.446 (4)C7—C81.359 (4)
N1—C11.397 (3)C7—C111.496 (4)
C1—C21.391 (3)C8—C91.503 (4)
O3—S1—O4116.79 (13)C4—C5—C6121.1 (3)
O3—S1—N1106.58 (13)C1—C6—C5117.2 (2)
O4—S1—N1111.04 (12)C1—C6—C7121.3 (2)
O3—S1—C8112.85 (12)C5—C6—C7121.4 (3)
O4—S1—C8108.38 (12)C8—C7—C6121.2 (2)
N1—S1—C899.88 (13)C8—C7—C11121.1 (3)
C9—O2—C10117.3 (2)C6—C7—C11117.7 (2)
C1—N1—S1121.58 (18)C7—C8—C9125.5 (2)
C2—C1—N1119.2 (2)C7—C8—S1120.2 (2)
C2—C1—C6121.4 (2)C9—C8—S1114.1 (2)
N1—C1—C6119.3 (2)O1—C9—O2124.7 (3)
C3—C2—C1119.5 (3)O1—C9—C8125.0 (3)
C2—C3—C4120.4 (3)O2—C9—C8110.3 (2)
C5—C4—C3120.5 (3)
O3—S1—N1—C1163.3 (2)C1—C6—C7—C11166.1 (3)
O4—S1—N1—C168.5 (2)C5—C6—C7—C119.2 (4)
C8—S1—N1—C145.7 (2)C6—C7—C8—C9178.5 (2)
S1—N1—C1—C2149.9 (2)C11—C7—C8—C93.3 (4)
S1—N1—C1—C632.6 (3)C6—C7—C8—S16.1 (3)
N1—C1—C2—C3178.3 (3)C11—C7—C8—S1172.1 (2)
C6—C1—C2—C30.8 (4)O3—S1—C8—C7145.0 (2)
C1—C2—C3—C40.9 (5)O4—S1—C8—C784.1 (2)
C2—C3—C4—C52.1 (5)N1—S1—C8—C732.2 (2)
C3—C4—C5—C61.6 (4)O3—S1—C8—C939.2 (2)
C2—C1—C6—C51.3 (4)O4—S1—C8—C991.8 (2)
N1—C1—C6—C5178.8 (2)N1—S1—C8—C9151.97 (19)
C2—C1—C6—C7174.3 (2)C10—O2—C9—O14.8 (5)
N1—C1—C6—C73.2 (4)C10—O2—C9—C8174.5 (2)
C4—C5—C6—C10.1 (4)C7—C8—C9—O135.2 (5)
C4—C5—C6—C7175.5 (2)S1—C8—C9—O1149.2 (3)
C1—C6—C7—C815.6 (4)C7—C8—C9—O2145.5 (3)
C5—C6—C7—C8169.1 (3)S1—C8—C9—O230.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O10.962.242.986 (5)133
N1—H1N···O4i0.81 (4)2.09 (4)2.891 (3)170 (4)
C4—H4···O3ii0.932.553.427 (3)158
Symmetry codes: (i) x, y, z1/2; (ii) x1, y, z+1/2.
 

References

First citationAgilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAzotla-Cruz, L., Lijanova, I. V., Ukrainets, I. V., Likhanova, N. V., Olivares-Xometl, O. & Bereznyakova, N. L. (2017). Sci. Pharm. 85, 2.  Google Scholar
First citationAzotla-Cruz, L., Shishkina, S., Ukrainets, I., Lijanova, I. & Likhanova, N. (2016). Acta Cryst. E72, 1574–1576.  CrossRef IUCr Journals Google Scholar
First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-7-84. Weinheim: VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUkrainets, I. V., Hamza, G. M., Burian, A. A., Shishkina, S. V., Voloshchuk, N. I. & Malchenko, O. V. (2018). Sci. Pharm. 86, 9.  CrossRef Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Shishkina, S. V., Grinevich, L. A. & Sim, G. (2016a). Sci. Pharm. 84, 705–714.  CrossRef Google Scholar
First citationUkrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016b). Acta Cryst. C72, 411–415.  CrossRef IUCr Journals Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds