organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o163-o164

(E)-3-(4-Heptyl­oxyphen­yl)-1-phenyl­prop-2-en-1-one

aDepartment of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, USA
*Correspondence e-mail: mafranks@ncat.edu

(Received 29 August 2013; accepted 21 December 2013; online 18 January 2014)

In the title compound, C22H26O2, the aromatic rings are inclined to one another by 8.39 (9)° and the mol­ecule has an E conformation about the C=C bond. In the crystal, mol­ecules stack head-to-tail along the b-axis direction. They are linked by very weak C—H⋯O contacts, forming C(4) chains along [100]. Two chains are linked by a pair of very weak C—H⋯O contacts, enclosing inversion-dimeric R22(8) ring motifs. There are also C—H⋯π inter­actions present, which link the double-stranded chains, forming a two-dimensional network.

Related literature

For general background to chalcones, see: Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]); Indira et al. (2002[Indira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]); Treadwell (2006[Treadwell, E. M. (2006). Acta Cryst. E62, o5899-o5900.]). For their various biological properties, see: Avila et al. (2008[Avila, H. P., Smania, E. E. F., Monache, F. D. & Smania, A. (2008). Bioorg. Med. Chem. 16, 9790-9794.]); ElSohly et al. (2001[ElSohly, H. N., Joshi, A. S., Nimrod, A. C., Walker, L. A. & Clark, A. M. (2001). Planta Med. 67, 87-89.]); Gafner et al. (1996[Gafner, S., Wolfender, J. L., Mavi, S. & Hostettmann, K. (1996). Planta Med. 62, 67-69.]); Akihisa et al. (2003[Akihisa, T., Tokuda, H., Ukiya, M., Iizuka, M., Schneider, S., Ogasawara, K., Mukainaka, T., Iwatsuki, K., Suzuki, T. & Nishino, H. (2003). Cancer Lett. 201, 133-137.]); Szliszka et al. (2009[Szliszka, E., Czuba, Z. P., Mazur, B., Sedek, L., Paradysz, A. & Krol, W. (2009). Int. J. Mol. Sci. 11, 1-13.]); Xia et al. (2000[Xia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699-701.]); Lahtchev et al. (2008[Lahtchev, K. L., Batovska, D. I., Parushev, S. P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220-2228.]); Bandgar et al. (2010[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364-1370.]). For their enhanced cytotoxicity towards certain cancers, see: Won et al. (2005[Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103-112.]). For examples of chalcones with general formula Ar—CH–CH—CO—Ar, with mol­ecular pairing involving ππ inter­actions and hydrogen-bonding, see: Wang et al. (2005[Wang, L., Yang, W. & Zhang, D.-C. (2005). Acta Cryst. E61, o2820-o2822.]). For related halogen derivatives, see: Dutkiewicz et al. (2010[Dutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243-o1244.]); Qiu et al. (2006[Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, o3525-o3526.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26O2

  • Mr = 322.43

  • Triclinic, [P \overline 1]

  • a = 5.6069 (9) Å

  • b = 7.7822 (13) Å

  • c = 22.864 (4) Å

  • α = 81.101 (5)°

  • β = 85.571 (5)°

  • γ = 69.879 (4)°

  • V = 925.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.50 × 0.26 × 0.16 mm

Data collection
  • Bruker X2S diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.989

  • 5754 measured reflections

  • 3149 independent reflections

  • 2314 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.152

  • S = 1.09

  • 3149 reflections

  • 322 parameters

  • All H-atom parameters refined

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C4–C9 and C17–C22, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.99 (2) 2.67 (2) 3.513 (2) 143.3 (12)
C8—H8⋯O2ii 0.95 (2) 2.64 (2) 3.545 (2) 159.3 (13)
C10—H10BCg1iii 0.98 (2) 2.972 (15) 3.8279 (18) 146.6 (13)
C16—H16ACg2iii 0.97 (3) 2.97 (2) 3.792 (3) 144.5 (18)
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: JMol (Hanson, 2010[Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250-1260.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chalcones along with their derivatives can easily be obtained by means of isolation from natural products or synthesized by classic scientific methods. These compounds are interesting in the medical field because of their antibacterial (Avila et al., 2008), antifungal (ElSohly et al., 2001; Gafner et al., 1996), antitumor (Akihisa et al., 2003; Szliszka et al., 2009; Xia et al., 2000; Lahtchev et al., 2008) and anti-inflammatory properties (Bandgar et al., 2010). These compounds have also shown enhanced cytotoxicity towards certain cancers (Won et al., 2005). Synthetically chalcones are derived through an aldol condensation which involves the reaction between an aromatic aldehyde with an aliphatic aldehyde or ketone in the presence of a strong base (hydroxide or alkoxide). The resulting compound contains two aromatic rings joined by a three carbon α,β-unsaturated carbonyl system, and we report herein on its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. The two aromatic rings (C4–C9 and C17–C22) are inclined to one another by 8.39 (9)° and the molecule has an E conformation about the C2C3 bond.

In the crystal, the molecules stack head-to-tail along the b axis. They molecules are linked by very weak C-H···O and C-H···π interactions (Table 1). Atom O1 of the carbonyl group interacts with the H atom, H2, of the C2 C3 double bond in a CO···HCC fashion, resulting in the formation of C(4) chains along the a-axis direction. In addition, the O atom, O2, of the ether moiety is also involved in a weak hydrogen bond with the central phenyl group of an inversion related neighboring molecule. The two molecules are arranged head-to-tail, which induces formation of an inversion dimeric unit and an eight-membered R22(8) ring containing a pair of very weak C-H···O hydrogen bonds (Table 1).

As a result of the head-to-tail flipping, there is no ring alignment within the structure, hence the system lacks any significant ππ interactions but there are C—H···π contacts present (Table 1) which link the double stranded chains to form a two-dimensional network.

Related literature top

For general background to chalcones, see: Uchida et al. (1998); Indira et al. (2002); Treadwell (2006). For their various biological properties, see: Avila et al. (2008); ElSohly et al. (2001); Gafner et al. (1996); Akihisa et al. (2003); Szliszka et al. (2009); Xia et al. (2000); Lahtchev et al. (2008); Bandgar et al. (2010). For their enhanced cytotoxicity towards certain cancers, see: Won et al. (2005). For examples of chalcones with general formula Ar—CH–CH—CO—Ar, with molecular pairing involving ππ interactions and hydrogen-bonding, see: Wang et al. (2005). For related halogen derivatives, see: Dutkiewicz et al. (2010); Qiu et al. (2006).

Experimental top

The title compound was obtained by mixing acetophenone (0.150 g, 1.22 mmol), 4-(heptyloxy)benzaldehyde (0.269 g, 1.22 mmol), a 10% solution of NaOH and ethanol at 273 K for 18 h, after which it was acidified with 1 N HCl. The crude product obtained was recrystallized from ethanol yielding yellow plate-like crystals.

Refinement top

All the H atoms were located in difference Fourier maps and freely refined.

Structure description top

Chalcones along with their derivatives can easily be obtained by means of isolation from natural products or synthesized by classic scientific methods. These compounds are interesting in the medical field because of their antibacterial (Avila et al., 2008), antifungal (ElSohly et al., 2001; Gafner et al., 1996), antitumor (Akihisa et al., 2003; Szliszka et al., 2009; Xia et al., 2000; Lahtchev et al., 2008) and anti-inflammatory properties (Bandgar et al., 2010). These compounds have also shown enhanced cytotoxicity towards certain cancers (Won et al., 2005). Synthetically chalcones are derived through an aldol condensation which involves the reaction between an aromatic aldehyde with an aliphatic aldehyde or ketone in the presence of a strong base (hydroxide or alkoxide). The resulting compound contains two aromatic rings joined by a three carbon α,β-unsaturated carbonyl system, and we report herein on its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. The two aromatic rings (C4–C9 and C17–C22) are inclined to one another by 8.39 (9)° and the molecule has an E conformation about the C2C3 bond.

In the crystal, the molecules stack head-to-tail along the b axis. They molecules are linked by very weak C-H···O and C-H···π interactions (Table 1). Atom O1 of the carbonyl group interacts with the H atom, H2, of the C2 C3 double bond in a CO···HCC fashion, resulting in the formation of C(4) chains along the a-axis direction. In addition, the O atom, O2, of the ether moiety is also involved in a weak hydrogen bond with the central phenyl group of an inversion related neighboring molecule. The two molecules are arranged head-to-tail, which induces formation of an inversion dimeric unit and an eight-membered R22(8) ring containing a pair of very weak C-H···O hydrogen bonds (Table 1).

As a result of the head-to-tail flipping, there is no ring alignment within the structure, hence the system lacks any significant ππ interactions but there are C—H···π contacts present (Table 1) which link the double stranded chains to form a two-dimensional network.

For general background to chalcones, see: Uchida et al. (1998); Indira et al. (2002); Treadwell (2006). For their various biological properties, see: Avila et al. (2008); ElSohly et al. (2001); Gafner et al. (1996); Akihisa et al. (2003); Szliszka et al. (2009); Xia et al. (2000); Lahtchev et al. (2008); Bandgar et al. (2010). For their enhanced cytotoxicity towards certain cancers, see: Won et al. (2005). For examples of chalcones with general formula Ar—CH–CH—CO—Ar, with molecular pairing involving ππ interactions and hydrogen-bonding, see: Wang et al. (2005). For related halogen derivatives, see: Dutkiewicz et al. (2010); Qiu et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2005; cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: JMol (Hanson, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
(E)-3-(4-Heptyloxyphenyl)-1-phenylprop-2-en-1-one top
Crystal data top
C22H26O2Z = 2
Mr = 322.43F(000) = 348
Triclinic, P1Dx = 1.157 Mg m3
a = 5.6069 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7822 (13) ÅCell parameters from 2314 reflections
c = 22.864 (4) Åθ = 0.9–25.1°
α = 81.101 (5)°µ = 0.07 mm1
β = 85.571 (5)°T = 200 K
γ = 69.879 (4)°Plate, yellow
V = 925.2 (3) Å30.50 × 0.26 × 0.16 mm
Data collection top
Bruker X2S
diffractometer
3149 independent reflections
Radiation source: fine-focus sealed tube2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
automatic scansθmax = 25.1°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS, Bruker, 2005)
h = 66
Tmin = 0.965, Tmax = 0.989k = 99
5754 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051All H-atom parameters refined
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.0136P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3149 reflectionsΔρmax = 0.44 e Å3
322 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.055 (8)
Crystal data top
C22H26O2γ = 69.879 (4)°
Mr = 322.43V = 925.2 (3) Å3
Triclinic, P1Z = 2
a = 5.6069 (9) ÅMo Kα radiation
b = 7.7822 (13) ŵ = 0.07 mm1
c = 22.864 (4) ÅT = 200 K
α = 81.101 (5)°0.50 × 0.26 × 0.16 mm
β = 85.571 (5)°
Data collection top
Bruker X2S
diffractometer
3149 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2005)
2314 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.989Rint = 0.044
5754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.152All H-atom parameters refined
S = 1.09Δρmax = 0.44 e Å3
3149 reflectionsΔρmin = 0.24 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0523 (3)0.7906 (2)0.72962 (7)0.0430 (4)
C20.2373 (3)0.7615 (2)0.77569 (7)0.0400 (4)
C30.1563 (3)0.7911 (2)0.83070 (7)0.0387 (4)
C40.3023 (3)0.7649 (2)0.88344 (7)0.0364 (4)
C50.1749 (3)0.8252 (2)0.93499 (7)0.0413 (4)
C60.2981 (3)0.8036 (2)0.98702 (8)0.0416 (4)
C70.5591 (3)0.7171 (2)0.98833 (7)0.0351 (4)
C80.6904 (3)0.6503 (2)0.93778 (7)0.0390 (4)
C90.5660 (3)0.6753 (2)0.88623 (7)0.0382 (4)
C100.5762 (3)0.7608 (2)1.08943 (7)0.0402 (4)
C110.7707 (3)0.7139 (2)1.13640 (7)0.0417 (4)
C120.6526 (3)0.7708 (2)1.19529 (7)0.0434 (5)
C130.8447 (4)0.7246 (2)1.24366 (8)0.0449 (5)
C140.7285 (4)0.7721 (2)1.30362 (8)0.0471 (5)
C150.9149 (4)0.7081 (3)1.35305 (9)0.0608 (6)
C160.7959 (7)0.7512 (4)1.41297 (10)0.0790 (7)
C170.3892 (4)0.6901 (3)0.64939 (8)0.0485 (5)
C180.4548 (4)0.6707 (3)0.59057 (9)0.0582 (5)
C190.2705 (4)0.7373 (3)0.54822 (9)0.0596 (6)
C200.0207 (4)0.8227 (3)0.56481 (8)0.0580 (6)
C210.0447 (4)0.8401 (3)0.62334 (8)0.0492 (5)
C220.1388 (3)0.7733 (2)0.66679 (7)0.0403 (4)
O10.1746 (2)0.8262 (2)0.74253 (5)0.0659 (5)
O20.7021 (2)0.68945 (15)1.03686 (5)0.0435 (3)
H20.421 (4)0.718 (2)0.7647 (7)0.049 (5)*
H30.021 (4)0.828 (2)0.8379 (7)0.047 (5)*
H50.003 (3)0.881 (2)0.9330 (7)0.044 (5)*
H60.206 (3)0.843 (2)1.0227 (8)0.051 (5)*
H80.867 (3)0.587 (2)0.9416 (7)0.040 (4)*
H90.660 (3)0.629 (2)0.8518 (7)0.043 (4)*
H10A0.444 (3)0.700 (2)1.1034 (7)0.053 (5)*
H10B0.496 (3)0.895 (2)1.0810 (7)0.044 (4)*
H11A0.898 (3)0.775 (2)1.1222 (7)0.049 (5)*
H11B0.860 (3)0.578 (2)1.1418 (7)0.042 (4)*
H12A0.534 (4)0.700 (2)1.2111 (8)0.059 (5)*
H12B0.563 (3)0.899 (3)1.1912 (8)0.052 (5)*
H13A0.967 (4)0.790 (2)1.2316 (8)0.058 (5)*
H13B0.938 (4)0.588 (3)1.2473 (8)0.059 (5)*
H14A0.644 (3)0.901 (3)1.3017 (7)0.051 (5)*
H14B0.601 (4)0.711 (3)1.3149 (8)0.064 (6)*
H15A1.048 (4)0.763 (3)1.3422 (8)0.070 (6)*
H15B0.994 (4)0.571 (3)1.3551 (9)0.076 (6)*
H16A0.719 (4)0.880 (3)1.4161 (9)0.078 (7)*
H16B0.917 (5)0.698 (4)1.4446 (13)0.119 (10)*
H16C0.656 (5)0.692 (4)1.4224 (12)0.121 (10)*
H170.517 (3)0.644 (2)0.6772 (8)0.048 (5)*
H180.630 (4)0.611 (2)0.5772 (8)0.064 (6)*
H190.319 (4)0.725 (3)0.5065 (9)0.068 (6)*
H200.115 (4)0.867 (3)0.5363 (9)0.067 (6)*
H210.219 (4)0.898 (3)0.6362 (8)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (11)0.0448 (9)0.0462 (10)0.0142 (8)0.0048 (8)0.0014 (7)
C20.0357 (11)0.0423 (9)0.0413 (10)0.0133 (8)0.0032 (8)0.0020 (7)
C30.0334 (10)0.0376 (8)0.0438 (10)0.0111 (7)0.0014 (8)0.0036 (7)
C40.0374 (10)0.0317 (8)0.0400 (9)0.0119 (7)0.0008 (7)0.0044 (7)
C50.0318 (10)0.0410 (9)0.0486 (11)0.0074 (8)0.0003 (8)0.0111 (7)
C60.0393 (11)0.0432 (9)0.0406 (10)0.0095 (8)0.0040 (8)0.0135 (7)
C70.0373 (10)0.0312 (7)0.0350 (9)0.0095 (7)0.0003 (7)0.0041 (6)
C80.0325 (10)0.0401 (9)0.0399 (9)0.0072 (8)0.0010 (8)0.0046 (7)
C90.0366 (10)0.0397 (8)0.0351 (9)0.0094 (7)0.0032 (8)0.0057 (7)
C100.0432 (11)0.0379 (9)0.0368 (9)0.0094 (8)0.0036 (8)0.0091 (7)
C110.0459 (11)0.0386 (9)0.0380 (10)0.0109 (8)0.0013 (8)0.0052 (7)
C120.0455 (11)0.0410 (9)0.0403 (10)0.0096 (8)0.0023 (8)0.0066 (7)
C130.0493 (11)0.0390 (9)0.0425 (10)0.0088 (8)0.0060 (8)0.0059 (7)
C140.0545 (12)0.0414 (10)0.0426 (10)0.0120 (9)0.0046 (9)0.0055 (8)
C150.0751 (15)0.0541 (12)0.0495 (12)0.0130 (11)0.0172 (11)0.0088 (9)
C160.119 (2)0.0727 (16)0.0472 (13)0.0301 (16)0.0154 (14)0.0122 (11)
C170.0422 (12)0.0569 (10)0.0458 (11)0.0149 (9)0.0054 (9)0.0073 (8)
C180.0522 (13)0.0721 (13)0.0516 (12)0.0205 (10)0.0036 (10)0.0159 (10)
C190.0697 (15)0.0743 (13)0.0412 (11)0.0317 (12)0.0002 (10)0.0105 (10)
C200.0625 (15)0.0695 (13)0.0449 (12)0.0264 (11)0.0144 (10)0.0007 (9)
C210.0446 (12)0.0557 (11)0.0475 (11)0.0181 (9)0.0078 (9)0.0022 (8)
C220.0438 (11)0.0398 (9)0.0404 (9)0.0186 (8)0.0052 (8)0.0028 (7)
O10.0394 (9)0.1036 (11)0.0515 (8)0.0195 (7)0.0026 (6)0.0110 (7)
O20.0394 (7)0.0494 (7)0.0347 (7)0.0047 (5)0.0026 (5)0.0088 (5)
Geometric parameters (Å, º) top
C1—O11.228 (2)C12—H12A1.014 (18)
C1—C21.473 (2)C12—H12B0.940 (18)
C1—C221.491 (2)C13—C141.515 (2)
C2—C31.331 (2)C13—H13A0.986 (18)
C2—H20.991 (19)C13—H13B1.005 (19)
C3—C41.459 (2)C14—C151.506 (3)
C3—H30.944 (18)C14—H14A0.947 (19)
C4—C51.389 (2)C14—H14B0.99 (2)
C4—C91.403 (2)C15—C161.510 (3)
C5—C61.380 (2)C15—H15A0.98 (2)
C5—H50.944 (18)C15—H15B1.00 (2)
C6—C71.385 (2)C16—H16A0.95 (2)
C6—H60.963 (18)C16—H16B0.97 (3)
C7—O21.3659 (19)C16—H16C1.03 (3)
C7—C81.393 (2)C17—C181.384 (3)
C8—C91.370 (2)C17—C221.385 (3)
C8—H80.945 (18)C17—H170.934 (18)
C9—H90.959 (17)C18—C191.380 (3)
C10—O21.4343 (19)C18—H180.98 (2)
C10—C111.504 (2)C19—C201.379 (3)
C10—H10A1.019 (17)C19—H190.982 (19)
C10—H10B0.977 (17)C20—C211.375 (3)
C11—C121.514 (2)C20—H200.97 (2)
C11—H11A0.992 (17)C21—C221.395 (2)
C11—H11B0.995 (17)C21—H210.966 (19)
C12—C131.519 (2)
O1—C1—C2120.52 (15)H12A—C12—H12B110.1 (16)
O1—C1—C22119.01 (15)C14—C13—C12114.23 (15)
C2—C1—C22120.45 (15)C14—C13—H13A108.9 (10)
C3—C2—C1119.86 (16)C12—C13—H13A109.1 (11)
C3—C2—H2121.6 (10)C14—C13—H13B108.6 (10)
C1—C2—H2118.5 (10)C12—C13—H13B107.0 (10)
C2—C3—C4129.51 (17)H13A—C13—H13B108.9 (15)
C2—C3—H3116.6 (10)C15—C14—C13114.37 (17)
C4—C3—H3113.8 (10)C15—C14—H14A109.2 (10)
C5—C4—C9117.15 (15)C13—C14—H14A110.3 (10)
C5—C4—C3118.98 (15)C15—C14—H14B106.2 (11)
C9—C4—C3123.82 (15)C13—C14—H14B108.9 (10)
C6—C5—C4122.69 (17)H14A—C14—H14B107.6 (16)
C6—C5—H5120.8 (10)C14—C15—C16114.0 (2)
C4—C5—H5116.5 (10)C14—C15—H15A107.9 (12)
C5—C6—C7118.98 (16)C16—C15—H15A111.3 (12)
C5—C6—H6121.5 (11)C14—C15—H15B107.1 (12)
C7—C6—H6119.5 (11)C16—C15—H15B108.3 (11)
O2—C7—C6124.38 (14)H15A—C15—H15B108.1 (18)
O2—C7—C8116.11 (14)C15—C16—H16A114.9 (13)
C6—C7—C8119.51 (15)C15—C16—H16B112.3 (17)
C9—C8—C7120.79 (16)H16A—C16—H16B107 (2)
C9—C8—H8123.0 (9)C15—C16—H16C108.7 (15)
C7—C8—H8116.2 (9)H16A—C16—H16C107 (2)
C8—C9—C4120.84 (16)H16B—C16—H16C106 (2)
C8—C9—H9119.5 (10)C18—C17—C22120.81 (18)
C4—C9—H9119.7 (10)C18—C17—H17118.4 (11)
O2—C10—C11108.43 (13)C22—C17—H17120.8 (11)
O2—C10—H10A108.8 (9)C19—C18—C17120.1 (2)
C11—C10—H10A109.4 (10)C19—C18—H18117.5 (11)
O2—C10—H10B109.6 (9)C17—C18—H18122.4 (11)
C11—C10—H10B109.8 (10)C20—C19—C18119.71 (19)
H10A—C10—H10B110.8 (14)C20—C19—H19120.7 (12)
C10—C11—C12112.39 (14)C18—C19—H19119.6 (12)
C10—C11—H11A108.4 (10)C21—C20—C19120.16 (19)
C12—C11—H11A110.8 (9)C21—C20—H20118.0 (12)
C10—C11—H11B108.5 (9)C19—C20—H20121.8 (12)
C12—C11—H11B108.7 (9)C20—C21—C22120.95 (19)
H11A—C11—H11B107.9 (14)C20—C21—H21121.8 (11)
C11—C12—C13113.55 (15)C22—C21—H21117.3 (11)
C11—C12—H12A110.2 (10)C17—C22—C21118.26 (16)
C13—C12—H12A104.3 (10)C17—C22—C1123.77 (15)
C11—C12—H12B110.4 (11)C21—C22—C1117.95 (15)
C13—C12—H12B108.2 (11)C7—O2—C10118.10 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C4–C9 and C17–C22, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.99 (2)2.67 (2)3.513 (2)143.3 (12)
C8—H8···O2ii0.95 (2)2.64 (2)3.545 (2)159.3 (13)
C10—H10B···Cg1iii0.98 (2)2.972 (15)3.8279 (18)146.6 (13)
C16—H16A···Cg2iii0.97 (3)2.97 (2)3.792 (3)144.5 (18)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2; (iii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C4–C9 and C17–C22, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.99 (2)2.67 (2)3.513 (2)143.3 (12)
C8—H8···O2ii0.95 (2)2.64 (2)3.545 (2)159.3 (13)
C10—H10B···Cg1iii0.98 (2)2.972 (15)3.8279 (18)146.6 (13)
C16—H16A···Cg2iii0.97 (3)2.97 (2)3.792 (3)144.5 (18)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2; (iii) x+1, y+2, z+2.
 

Acknowledgements

Support from the National Science Foundation (CHE-0959406) for the purchase of the X-ray diffractometer is gratefully acknowledged.

References

First citationAkihisa, T., Tokuda, H., Ukiya, M., Iizuka, M., Schneider, S., Ogasawara, K., Mukainaka, T., Iwatsuki, K., Suzuki, T. & Nishino, H. (2003). Cancer Lett. 201, 133–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAvila, H. P., Smania, E. E. F., Monache, F. D. & Smania, A. (2008). Bioorg. Med. Chem. 16, 9790–9794.  Web of Science PubMed CAS Google Scholar
First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243–o1244.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElSohly, H. N., Joshi, A. S., Nimrod, A. C., Walker, L. A. & Clark, A. M. (2001). Planta Med. 67, 87–89.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGafner, S., Wolfender, J. L., Mavi, S. & Hostettmann, K. (1996). Planta Med. 62, 67–69.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIndira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationLahtchev, K. L., Batovska, D. I., Parushev, S. P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220–2228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, o3525–o3526.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzliszka, E., Czuba, Z. P., Mazur, B., Sedek, L., Paradysz, A. & Krol, W. (2009). Int. J. Mol. Sci. 11, 1–13.  Web of Science CrossRef PubMed Google Scholar
First citationTreadwell, E. M. (2006). Acta Cryst. E62, o5899–o5900.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationWang, L., Yang, W. & Zhang, D.-C. (2005). Acta Cryst. E61, o2820–o2822.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699–701.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o163-o164
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds