Download citation
Download citation
link to html
The structures of novel cocrystals of 4-nitro­pyridine N-oxide with benzene­sul­fon­amide derivatives, namely, 4-nitro­benzene­sul­fon­amide–4-nitro­pyridine N-oxide (1/1), C5H4N2O3·C6H6N2O4S, and 4-chloro­benzene­sul­fon­amide–4-nitro­pyridine N-oxide (1/1), C6H6ClNO2S·C5H4N2O3, are stabilized by N—H...O hydrogen bonds, with the sul­fon­amide group acting as a proton donor. The O atoms of the N-oxide and nitro groups are acceptors in these inter­actions. The latter is a double acceptor of bifurcated hydrogen bonds. Previous studies on similar crystal structures indicated com­petition between these functional groups in the formation of hydrogen bonds, with the priority being for the N-oxide group. In contrast, the present X-ray studies indicate the existence of a hydrogen-bonding synthon including N—H...O(N-oxide) and N—H...O(nitro) bridges. We present here a more detailed analysis of the N-oxide–sul­fon­amide–nitro N—H...O ternary com­plex with quantum theory com­putations and the Quantum Theory of Atoms in Mol­ecules (QTAIM) approach. Both inter­actions are present in the crystals, but the O atom of the N-oxide group is found to be a more effective proton acceptor in hydrogen bonds, with an inter­action energy about twice that of the nitro-group O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621012511/zo3015sup1.cif
Contains datablocks structure_I, structure_II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621012511/zo3015structure_Isup2.hkl
Contains datablock structure_I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621012511/zo3015structure_Isup4.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621012511/zo3015structure_IIsup3.hkl
Contains datablock structure_II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621012511/zo3015structure_IIsup5.cml
Supplementary material

CCDC references: 2124140; 2124139

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for structure_I; CrysAlis PRO (Rigaku OD, 2019) for structure_II. Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for structure_I; CrysAlis PRO (Rigaku OD, 2019) for structure_II. Data reduction: CrysAlis PRO (Rigaku OD, 2015) for structure_I; CrysAlis PRO (Rigaku OD, 2019) for structure_II. For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

4-Nitrobenzenesulfonamide–4-nitropyridine N-oxide (1/1) (structure_I) top
Crystal data top
C5H4N2O3·C6H6N2O4SF(000) = 704
Mr = 342.29Dx = 1.662 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.8459 (2) ÅCell parameters from 7021 reflections
b = 10.9530 (2) Åθ = 5.3–76.2°
c = 12.6881 (3) ŵ = 2.57 mm1
β = 91.524 (2)°T = 293 K
V = 1367.83 (5) Å3Plate, yellow
Z = 40.35 × 0.25 × 0.18 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
2848 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source2704 reflections with I > 2σ(I)
Detector resolution: 10.4052 pixels mm-1Rint = 0.018
ω scansθmax = 76.5°, θmin = 5.3°
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
h = 1212
Tmin = 0.889, Tmax = 0.942k = 1310
11842 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.6523P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2848 reflectionsΔρmax = 0.24 e Å3
216 parametersΔρmin = 0.49 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All XRD data were collected on a four-circle Oxford Diffraction Supernova Dual diffractometer using a two-dimensional area CCD. Integration of the intensities and corrections for Lorentz effects, polarization effects, and analytical absorption were performed with CrysAlis PRO. The crystal structures were solved by direct methods and refined on F2 with a full-matrix least-squares procedure (SHELXL2014; Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.31764 (10)0.50837 (8)0.45407 (8)0.0230 (2)
O120.10353 (10)0.75433 (9)0.72598 (8)0.0256 (2)
O42A0.14780 (10)0.02804 (9)0.50911 (9)0.0262 (2)
O110.11632 (10)0.53536 (9)0.67629 (9)0.0262 (2)
O41A0.35783 (11)0.03833 (9)0.56319 (9)0.0285 (2)
O420.80474 (10)0.73469 (11)0.84559 (9)0.0314 (3)
O410.81244 (10)0.54216 (10)0.80761 (9)0.0305 (2)
N1A0.30350 (11)0.39244 (10)0.47247 (9)0.0180 (2)
N40.75210 (11)0.64031 (12)0.81260 (9)0.0234 (3)
N10.16751 (11)0.69435 (11)0.54861 (9)0.0189 (2)
N4A0.25935 (12)0.01884 (10)0.52868 (9)0.0202 (2)
C4A0.27484 (13)0.14912 (11)0.50865 (10)0.0171 (3)
C10.34092 (13)0.65172 (11)0.71663 (10)0.0175 (3)
C40.60776 (13)0.64406 (13)0.77847 (10)0.0197 (3)
C6A0.41091 (13)0.32742 (12)0.51232 (11)0.0194 (3)
H6A0.4932610.3663810.5266730.023*
C5A0.39829 (13)0.20443 (12)0.53149 (10)0.0192 (3)
H5A0.4710770.1595630.5591450.023*
C20.40708 (14)0.53959 (12)0.72214 (10)0.0196 (3)
H20.3604330.4681330.7051210.023*
C3A0.16510 (13)0.21481 (13)0.46808 (11)0.0209 (3)
H3A0.0824020.1767480.4530700.025*
C60.40727 (14)0.76026 (12)0.74346 (10)0.0196 (3)
H60.3608900.8341900.7402950.024*
C2A0.18167 (13)0.33763 (12)0.45061 (11)0.0216 (3)
H2A0.1093430.3836530.4237040.026*
C50.54317 (14)0.75675 (13)0.77490 (11)0.0209 (3)
H50.5897610.8278760.7930930.025*
C30.54311 (14)0.53514 (12)0.75320 (10)0.0206 (3)
H30.5895530.4612710.7569530.025*
S10.16876 (3)0.65721 (3)0.67104 (2)0.01723 (10)
H1A0.211 (2)0.638 (2)0.5094 (16)0.038 (5)*
H1B0.1897 (19)0.765 (2)0.5379 (15)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0232 (5)0.0131 (4)0.0327 (5)0.0020 (4)0.0048 (4)0.0013 (4)
O120.0216 (5)0.0289 (5)0.0263 (5)0.0059 (4)0.0024 (4)0.0044 (4)
O42A0.0236 (5)0.0203 (5)0.0347 (6)0.0067 (4)0.0020 (4)0.0006 (4)
O110.0218 (5)0.0195 (5)0.0371 (6)0.0039 (4)0.0021 (4)0.0089 (4)
O41A0.0299 (5)0.0226 (5)0.0327 (6)0.0053 (4)0.0047 (4)0.0067 (4)
O420.0215 (5)0.0396 (6)0.0328 (6)0.0025 (4)0.0050 (4)0.0088 (5)
O410.0231 (5)0.0373 (6)0.0309 (6)0.0115 (4)0.0016 (4)0.0005 (5)
N1A0.0177 (5)0.0156 (5)0.0208 (5)0.0012 (4)0.0025 (4)0.0023 (4)
N40.0177 (5)0.0355 (7)0.0169 (5)0.0024 (5)0.0008 (4)0.0001 (5)
N10.0197 (5)0.0163 (5)0.0205 (6)0.0004 (4)0.0017 (4)0.0009 (4)
N4A0.0230 (5)0.0183 (5)0.0194 (5)0.0001 (4)0.0017 (4)0.0000 (4)
C4A0.0181 (6)0.0155 (6)0.0178 (6)0.0004 (5)0.0005 (5)0.0006 (4)
C10.0193 (6)0.0183 (6)0.0148 (6)0.0016 (5)0.0000 (5)0.0018 (4)
C40.0177 (6)0.0260 (7)0.0153 (6)0.0020 (5)0.0015 (5)0.0002 (5)
C6A0.0141 (6)0.0212 (6)0.0230 (6)0.0010 (5)0.0001 (5)0.0042 (5)
C5A0.0160 (6)0.0218 (6)0.0196 (6)0.0014 (5)0.0015 (5)0.0020 (5)
C20.0227 (6)0.0163 (6)0.0197 (6)0.0011 (5)0.0008 (5)0.0007 (5)
C3A0.0148 (6)0.0206 (6)0.0273 (7)0.0020 (5)0.0018 (5)0.0008 (5)
C60.0224 (6)0.0169 (6)0.0195 (6)0.0029 (5)0.0007 (5)0.0003 (5)
C2A0.0155 (6)0.0200 (6)0.0292 (7)0.0005 (5)0.0029 (5)0.0001 (5)
C50.0227 (6)0.0211 (7)0.0188 (6)0.0019 (5)0.0017 (5)0.0011 (5)
C30.0229 (6)0.0201 (6)0.0188 (6)0.0051 (5)0.0009 (5)0.0013 (5)
S10.01570 (16)0.01613 (17)0.01985 (17)0.00064 (10)0.00024 (11)0.00184 (11)
Geometric parameters (Å, º) top
O1A—N1A1.2992 (15)C1—C61.3944 (18)
O12—S11.4331 (10)C1—S11.7775 (13)
O42A—N4A1.2317 (15)C4—C31.3857 (19)
O11—S11.4332 (10)C4—C51.3887 (19)
O41A—N4A1.2253 (15)C6A—C5A1.3750 (19)
O42—N41.2251 (17)C6A—H6A0.9300
O41—N41.2308 (16)C5A—H5A0.9300
N1A—C6A1.3612 (17)C2—C31.3869 (19)
N1A—C2A1.3632 (17)C2—H20.9300
N4—C41.4752 (17)C3A—C2A1.3737 (19)
N1—S11.6055 (12)C3A—H3A0.9300
N1—H1A0.91 (2)C6—C51.3866 (19)
N1—H1B0.82 (2)C6—H60.9300
N4A—C4A1.4582 (16)C2A—H2A0.9300
C4A—C5A1.3819 (18)C5—H50.9300
C4A—C3A1.3858 (18)C3—H30.9300
C1—C21.3910 (18)
O1A—N1A—C6A119.48 (11)C4A—C5A—H5A120.8
O1A—N1A—C2A119.46 (11)C3—C2—C1119.52 (12)
C6A—N1A—C2A121.05 (11)C3—C2—H2120.2
O42—N4—O41123.65 (12)C1—C2—H2120.2
O42—N4—C4118.19 (12)C2A—C3A—C4A118.27 (12)
O41—N4—C4118.15 (12)C2A—C3A—H3A120.9
S1—N1—H1A111.6 (13)C4A—C3A—H3A120.9
S1—N1—H1B114.0 (14)C5—C6—C1119.27 (12)
H1A—N1—H1B114.5 (19)C5—C6—H6120.4
O41A—N4A—O42A123.50 (12)C1—C6—H6120.4
O41A—N4A—C4A118.49 (11)N1A—C2A—C3A120.40 (12)
O42A—N4A—C4A118.01 (11)N1A—C2A—H2A119.8
C5A—C4A—C3A121.53 (12)C3A—C2A—H2A119.8
C5A—C4A—N4A119.21 (12)C6—C5—C4118.13 (12)
C3A—C4A—N4A119.26 (12)C6—C5—H5120.9
C2—C1—C6121.65 (12)C4—C5—H5120.9
C2—C1—S1119.18 (10)C4—C3—C2118.01 (12)
C6—C1—S1119.15 (10)C4—C3—H3121.0
C3—C4—C5123.40 (12)C2—C3—H3121.0
C3—C4—N4118.49 (12)O12—S1—O11120.13 (6)
C5—C4—N4118.10 (12)O12—S1—N1106.89 (6)
N1A—C6A—C5A120.35 (12)O11—S1—N1106.70 (6)
N1A—C6A—H6A119.8O12—S1—C1107.62 (6)
C5A—C6A—H6A119.8O11—S1—C1107.16 (6)
C6A—C5A—C4A118.39 (12)N1—S1—C1107.83 (6)
C6A—C5A—H5A120.8
O41A—N4A—C4A—C5A1.58 (18)C2—C1—C6—C51.0 (2)
O42A—N4A—C4A—C5A178.98 (11)S1—C1—C6—C5177.37 (10)
O41A—N4A—C4A—C3A179.01 (12)O1A—N1A—C2A—C3A179.09 (12)
O42A—N4A—C4A—C3A0.44 (18)C6A—N1A—C2A—C3A0.3 (2)
O42—N4—C4—C3172.31 (12)C4A—C3A—C2A—N1A0.3 (2)
O41—N4—C4—C36.78 (18)C1—C6—C5—C40.10 (19)
O42—N4—C4—C56.74 (18)C3—C4—C5—C60.6 (2)
O41—N4—C4—C5174.18 (12)N4—C4—C5—C6179.61 (11)
O1A—N1A—C6A—C5A179.45 (12)C5—C4—C3—C20.4 (2)
C2A—N1A—C6A—C5A0.07 (19)N4—C4—C3—C2179.42 (11)
N1A—C6A—C5A—C4A0.43 (19)C1—C2—C3—C40.5 (2)
C3A—C4A—C5A—C6A0.4 (2)C2—C1—S1—O12147.09 (11)
N4A—C4A—C5A—C6A179.84 (12)C6—C1—S1—O1234.50 (12)
C6—C1—C2—C31.2 (2)C2—C1—S1—O1116.61 (13)
S1—C1—C2—C3177.18 (10)C6—C1—S1—O11164.99 (10)
C5A—C4A—C3A—C2A0.1 (2)C2—C1—S1—N197.93 (11)
N4A—C4A—C3A—C2A179.50 (12)C6—C1—S1—N180.48 (12)
4-Chlorobenzenesulfonamide–4-nitropyridine N-oxide (1/1) (structure_II) top
Crystal data top
C6H6ClNO2S·C5H4N2O3F(000) = 680
Mr = 331.73Dx = 1.623 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.392 (2) ÅCell parameters from 8998 reflections
b = 11.2356 (8) Åθ = 3.1–31.5°
c = 16.674 (19) ŵ = 0.46 mm1
β = 101.33 (5)°T = 293 K
V = 1357.8 (16) Å3Plate, yellow
Z = 40.69 × 0.18 × 0.09 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
3430 independent reflections
Radiation source: micro-focus sealed X-ray tube2577 reflections with I > 2σ(I)
Detector resolution: 10.4052 pixels mm-1Rint = 0.046
ω scansθmax = 28.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 99
Tmin = 0.459, Tmax = 1.000k = 1315
17382 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.088H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0148P)2 + 8.5074P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3430 reflectionsΔρmax = 1.47 e Å3
286 parametersΔρmin = 1.05 e Å3
21 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All XRD data were collected on a four-circle Oxford Diffraction Supernova Dual diffractometer using a two-dimensional area CCD. Integration of the intensities and corrections for Lorentz effects, polarization effects, and analytical absorption were performed with CrysAlis PRO. The crystal structures were solved by direct methods and refined on F2 with a full-matrix least-squares procedure (SHELXL2014; Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.393 (3)0.475 (3)0.1781 (19)0.032 (4)0.5
N1A0.3560 (9)0.5908 (7)0.1677 (4)0.0266 (14)0.5
C6A0.3887 (18)0.6301 (11)0.0952 (8)0.027 (3)0.5
H6A0.4122570.5744800.0572590.032*0.5
C5A0.389 (2)0.7543 (13)0.0743 (10)0.024 (3)0.5
H5A0.4112180.7812280.0244280.029*0.5
C4A0.3518 (11)0.8309 (10)0.1347 (6)0.0218 (16)0.5
C3A0.3217 (15)0.7911 (12)0.2115 (7)0.024 (2)0.5
H3A0.2998570.8441970.2513570.029*0.5
C2A0.3263 (10)0.6702 (8)0.2244 (6)0.0204 (15)0.5
H2A0.3079940.6417550.2746310.024*0.5
N4A0.3503 (15)0.9567 (14)0.1172 (6)0.031 (2)0.5
O42A0.3212 (10)1.0259 (6)0.1717 (5)0.0334 (15)0.5
O41A0.3759 (10)0.9894 (7)0.0504 (4)0.0447 (18)0.5
O42B0.354 (3)0.477 (3)0.181 (2)0.032 (4)0.5
O41B0.4360 (9)0.4886 (6)0.0525 (4)0.0322 (14)0.5
N4B0.4042 (9)0.5342 (7)0.1155 (4)0.0276 (15)0.5
C4B0.3769 (15)0.6634 (11)0.1181 (8)0.022 (2)0.5
C3B0.3428 (11)0.7169 (11)0.1890 (6)0.0268 (17)0.5
H3B0.3377030.6718310.2352770.032*0.5
N1B0.3267 (13)0.9025 (10)0.1222 (6)0.026 (2)0.5
C6B0.3640 (11)0.8485 (8)0.0532 (6)0.0309 (18)0.5
H6B0.3724840.8934390.0072220.037*0.5
C5B0.389 (2)0.7251 (14)0.0530 (11)0.029 (3)0.5
H5B0.4141610.6872160.0067640.034*0.5
O1B0.2961 (12)1.0150 (8)0.1226 (6)0.0365 (18)0.5
C2B0.3178 (16)0.8339 (12)0.1889 (8)0.028 (2)0.5
H2B0.2934810.8702420.2357960.033*0.5
O110.8024 (4)0.3371 (3)0.17352 (19)0.0348 (7)
C10.6671 (5)0.2280 (4)0.2851 (2)0.0246 (8)
C60.6613 (6)0.3323 (4)0.3280 (3)0.0307 (9)
H60.6773850.4052510.3039340.037*
C50.6312 (5)0.3274 (4)0.4079 (3)0.0313 (9)
H50.6283260.3968640.4379480.038*
C40.6054 (5)0.2172 (4)0.4421 (3)0.0287 (9)
C30.6126 (5)0.1122 (4)0.4004 (3)0.0270 (9)
H30.5969260.0396300.4248990.032*
C20.6438 (5)0.1166 (4)0.3203 (3)0.0270 (9)
H20.6489990.0469090.2907530.032*
Cl40.55992 (15)0.21104 (12)0.54090 (7)0.0403 (3)
S10.70284 (16)0.23043 (12)0.18306 (7)0.0351 (3)
O120.7782 (6)0.1188 (3)0.1669 (2)0.0496 (10)
N10.5043 (6)0.2425 (6)0.1225 (3)0.0662 (17)
H1A0.431 (8)0.174 (3)0.124 (5)0.099*
H1B0.430 (8)0.309 (4)0.128 (5)0.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.035 (8)0.022 (5)0.038 (5)0.002 (6)0.007 (6)0.003 (4)
N1A0.021 (3)0.026 (4)0.034 (4)0.003 (3)0.009 (3)0.003 (3)
C6A0.028 (5)0.019 (7)0.036 (7)0.003 (4)0.010 (4)0.006 (4)
C5A0.024 (5)0.011 (7)0.036 (8)0.009 (5)0.005 (5)0.003 (5)
C4A0.020 (4)0.016 (5)0.030 (5)0.004 (3)0.005 (3)0.006 (4)
C3A0.023 (4)0.030 (8)0.019 (6)0.004 (5)0.005 (4)0.001 (5)
C2A0.019 (4)0.016 (4)0.028 (4)0.003 (3)0.008 (3)0.004 (3)
N4A0.027 (5)0.031 (8)0.033 (4)0.006 (5)0.000 (3)0.010 (5)
O42A0.045 (4)0.020 (3)0.038 (4)0.002 (3)0.014 (3)0.001 (3)
O41A0.053 (4)0.048 (5)0.032 (3)0.010 (3)0.007 (3)0.016 (3)
O42B0.035 (8)0.017 (4)0.048 (6)0.001 (6)0.014 (6)0.002 (4)
O41B0.040 (3)0.026 (3)0.032 (3)0.005 (3)0.011 (3)0.007 (2)
N4B0.022 (3)0.036 (5)0.023 (3)0.001 (3)0.003 (3)0.009 (3)
C4B0.014 (4)0.021 (7)0.032 (6)0.002 (4)0.005 (4)0.006 (4)
C3B0.020 (4)0.033 (6)0.029 (5)0.002 (4)0.008 (3)0.005 (5)
N1B0.028 (4)0.011 (6)0.041 (5)0.005 (4)0.011 (3)0.004 (4)
C6B0.028 (4)0.027 (5)0.041 (5)0.000 (3)0.014 (3)0.005 (4)
C5B0.020 (4)0.016 (7)0.047 (9)0.005 (5)0.000 (5)0.011 (5)
O1B0.045 (5)0.013 (4)0.055 (5)0.002 (3)0.019 (4)0.003 (4)
C2B0.024 (4)0.032 (8)0.029 (7)0.000 (5)0.009 (4)0.003 (4)
O110.0292 (16)0.0388 (19)0.0373 (17)0.0088 (14)0.0085 (13)0.0108 (14)
C10.0151 (16)0.026 (2)0.032 (2)0.0050 (15)0.0013 (14)0.0127 (16)
C60.0228 (19)0.025 (2)0.042 (2)0.0059 (16)0.0010 (16)0.0109 (18)
C50.0179 (18)0.029 (2)0.047 (3)0.0022 (16)0.0052 (16)0.0006 (19)
C40.0144 (16)0.040 (3)0.032 (2)0.0010 (16)0.0045 (14)0.0055 (18)
C30.0217 (18)0.026 (2)0.034 (2)0.0008 (15)0.0067 (15)0.0117 (17)
C20.0195 (18)0.030 (2)0.031 (2)0.0017 (16)0.0040 (15)0.0071 (17)
Cl40.0309 (5)0.0554 (8)0.0375 (6)0.0057 (5)0.0136 (4)0.0022 (5)
S10.0331 (5)0.0416 (7)0.0274 (5)0.0149 (5)0.0016 (4)0.0135 (5)
O120.086 (3)0.037 (2)0.0280 (17)0.0217 (19)0.0165 (17)0.0003 (14)
N10.043 (2)0.106 (4)0.040 (2)0.038 (3)0.0141 (19)0.043 (3)
Geometric parameters (Å, º) top
O1A—N1A1.34 (3)N1B—C6B1.376 (13)
N1A—C2A1.349 (11)C6B—C5B1.399 (17)
N1A—C6A1.353 (16)C6B—H6B0.9300
C6A—C5A1.44 (2)C5B—H5B0.9300
C6A—H6A0.9300C2B—H2B0.9300
C5A—C4A1.391 (15)O11—S11.431 (3)
C5A—H5A0.9300C1—C61.378 (6)
C4A—C3A1.415 (13)C1—C21.407 (5)
C4A—N4A1.443 (14)C1—S11.773 (5)
C3A—C2A1.375 (15)C6—C51.394 (7)
C3A—H3A0.9300C6—H60.9300
C2A—H2A0.9300C5—C41.392 (6)
N4A—O41A1.222 (12)C5—H50.9300
N4A—O42A1.247 (15)C4—C31.376 (6)
O42B—N4B1.38 (3)C4—Cl41.746 (5)
O41B—N4B1.232 (9)C3—C21.400 (6)
N4B—C4B1.467 (14)C3—H30.9300
C4B—C5B1.31 (2)C2—H20.9300
C4B—C3B1.393 (14)S1—O121.420 (4)
C3B—C2B1.326 (16)S1—N11.616 (4)
C3B—H3B0.9300N1—H1A0.95 (2)
N1B—O1B1.284 (12)N1—H1B0.94 (2)
N1B—C2B1.366 (15)
O1A—N1A—C2A127.8 (15)C5B—C6B—H6B120.4
O1A—N1A—C6A111.5 (15)C4B—C5B—C6B119.5 (12)
C2A—N1A—C6A119.5 (9)C4B—C5B—H5B120.2
N1A—C6A—C5A122.8 (11)C6B—C5B—H5B120.2
N1A—C6A—H6A118.6C3B—C2B—N1B122.0 (11)
C5A—C6A—H6A118.6C3B—C2B—H2B119.0
C4A—C5A—C6A114.5 (13)N1B—C2B—H2B119.0
C4A—C5A—H5A122.7C6—C1—C2121.4 (4)
C6A—C5A—H5A122.7C6—C1—S1120.7 (3)
C5A—C4A—C3A123.2 (12)C2—C1—S1117.8 (3)
C5A—C4A—N4A117.0 (12)C1—C6—C5119.3 (4)
C3A—C4A—N4A119.7 (10)C1—C6—H6120.4
C2A—C3A—C4A116.7 (12)C5—C6—H6120.4
C2A—C3A—H3A121.6C4—C5—C6119.2 (4)
C4A—C3A—H3A121.6C4—C5—H5120.4
N1A—C2A—C3A123.1 (10)C6—C5—H5120.4
N1A—C2A—H2A118.4C3—C4—C5122.2 (4)
C3A—C2A—H2A118.4C3—C4—Cl4118.5 (3)
O41A—N4A—O42A123.9 (14)C5—C4—Cl4119.3 (4)
O41A—N4A—C4A118.8 (13)C4—C3—C2118.9 (4)
O42A—N4A—C4A117.3 (9)C4—C3—H3120.6
O41B—N4B—O42B127.7 (16)C2—C3—H3120.6
O41B—N4B—C4B119.2 (8)C3—C2—C1119.0 (4)
O42B—N4B—C4B111.9 (15)C3—C2—H2120.5
C5B—C4B—C3B122.0 (12)C1—C2—H2120.5
C5B—C4B—N4B117.9 (10)O12—S1—O11119.3 (2)
C3B—C4B—N4B120.1 (11)O12—S1—N1107.3 (3)
C2B—C3B—C4B118.4 (10)O11—S1—N1106.5 (2)
C2B—C3B—H3B120.8O12—S1—C1107.9 (2)
C4B—C3B—H3B120.8O11—S1—C1107.2 (2)
O1B—N1B—C2B120.9 (10)N1—S1—C1108.3 (2)
O1B—N1B—C6B120.2 (11)S1—N1—H1A111 (4)
C2B—N1B—C6B118.8 (11)S1—N1—H1B119 (5)
N1B—C6B—C5B119.2 (11)H1A—N1—H1B107 (3)
N1B—C6B—H6B120.4
O1A—N1A—C6A—C5A169.8 (16)C3B—C4B—C5B—C6B1 (2)
C2A—N1A—C6A—C5A1.7 (17)N4B—C4B—C5B—C6B179.9 (11)
N1A—C6A—C5A—C4A0 (2)N1B—C6B—C5B—C4B0 (2)
C6A—C5A—C4A—C3A1.6 (18)C4B—C3B—C2B—N1B0.8 (16)
C6A—C5A—C4A—N4A179.8 (11)O1B—N1B—C2B—C3B177.7 (10)
C5A—C4A—C3A—C2A1.4 (16)C6B—N1B—C2B—C3B0.4 (16)
N4A—C4A—C3A—C2A179.5 (8)C2—C1—C6—C50.2 (6)
O1A—N1A—C2A—C3A168.0 (14)S1—C1—C6—C5179.4 (3)
C6A—N1A—C2A—C3A2.1 (13)C1—C6—C5—C40.8 (6)
C4A—C3A—C2A—N1A0.6 (14)C6—C5—C4—C31.4 (6)
C5A—C4A—N4A—O41A2.0 (15)C6—C5—C4—Cl4177.9 (3)
C3A—C4A—N4A—O41A179.8 (9)C5—C4—C3—C21.1 (6)
C5A—C4A—N4A—O42A178.6 (11)Cl4—C4—C3—C2178.2 (3)
C3A—C4A—N4A—O42A0.3 (14)C4—C3—C2—C10.1 (6)
O41B—N4B—C4B—C5B0.5 (15)C6—C1—C2—C30.5 (6)
O42B—N4B—C4B—C5B168.6 (15)S1—C1—C2—C3179.0 (3)
O41B—N4B—C4B—C3B179.3 (8)C6—C1—S1—O12155.9 (3)
O42B—N4B—C4B—C3B12.6 (16)C2—C1—S1—O1224.6 (4)
C5B—C4B—C3B—C2B1.6 (17)C6—C1—S1—O1126.2 (4)
N4B—C4B—C3B—C2B179.6 (9)C2—C1—S1—O11154.2 (3)
O1B—N1B—C6B—C5B177.2 (11)C6—C1—S1—N188.3 (4)
C2B—N1B—C6B—C5B0.9 (16)C2—C1—S1—N191.3 (4)
Hydrogen- and halogen-bond geometries (Å, °) of the crystal structures of (I) and (II) top
Crystal structure (I)
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Ai0.92 (2)1.90 (2)2.804 (2)169 (2)
N1—H1B···O41Aii0.83 (2)2.32 (2)3.086 (2)155 (2)
N11—H11B···O42Aii0.83 (2)2.73 (2)3.479 (2)152 (2)
Crystal structure (II)
D—H···AD—HH···AD···AD—H···A
N1—H1A···O41Aiii0.94 (4)2.08 (5)2.977 (1)159 (7)
N1—H1A···O42Aiii0.94 (4)2.40 (5)3.161 (1)137 (6)
N1—H1B···O41Biv0.94 (5)2.38 (6)3.005 (1)123 (6)
N1—H1B···042Biv0.94 (5)2.20 (6)3.090 (3)157 (6)
N1—H1B···O1Aiv0.94 (5)2.08 (5)2.940 (3)151 (5)
N1—H1A···O1Biii0.94 (4)2.04 (4)2.984 (1)173 (6)
RX···YX···YRX···Y
C4—Cl4···O11v3.234 (5)154 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) x-1/2, -y+1/2, z+1/2.
Selected electron density parameters of hydrogen bonds identified via QTAIM.
Electron density (ρ), its Laplacian (∇2ρ) and total electron energy density (H) are all given in atomic units.
top
ρ2ρH
N—H···O(N-oxide)0.03360.12490.0010
N—H···O(nitro)0.01630.05890.0020
C—H···O(nitro)0.00810.02910.0011
C—H···π0.00550.01780.0009
Interaction energy and its components estimated for ternary complex shown in Fig. 5 (in kcal mol-1)
Negative values correspond to stabilizing effects, that is bonding. Positive values reflect antibonding effects.
top
Eint (total)-18,94
Eint (AB)-7,02
Eint (AC)0,40
Eint (BC)-12,96
Eint (2-body)-19,58
Eint (3-body)0,64
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds