Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Strain anisotropy can be well accounted for by the dislocation model of lattice distortion. In a texture-free powder or polycrystal, or if all possible Burgers vectors are equally populated, the dislocation contrast factors are a linear function of the fourth-order invariants of the hkl indices. Using this relation the dislocation contrast factors have been evaluated numerically and compiled for a number of common hexagonal materials. A procedure is presented to match experimentally determined contrast factor parameters with the numerically obtained parameter values. The procedure can be used as a tool to extract the microstructure from strain anisotropy in terms of Burgers vector populations, dislocation densities, crystallite size and size distributions in hexagonal crystals. Its practical use is illustrated by the application to plastically deformed titanium.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds