Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
It has been shown recently that in many cases strain anisotropy in powder diffraction can be well accounted for by the dislocation model of the mean square strain. The practical application assumes knowledge of the individual contrast factors C of dislocations related to particular Burgers, line and diffraction vectors or to the average contrast factors C. A simple procedure for the experimental determination of C has been worked out, enabling the determination of the character of the dislocations in terms of a simple parameter q. The values of the individual C factors were determined numerically for a wide range of elastic constants for cubic crystals. The C factors and q parameters were parametrized by simple analytical functions, which can be used in a straightforward manner in numerical analyses, as e.g. in Rietveld structure refinement procedures.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds