research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-(3-amino-5-oxo-2-tosyl-2,5-di­hydro-1H-pyrazol-1-yl)acetate

crossmark logo

aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by M. Zeller, Purdue University, USA (Received 3 May 2021; accepted 6 May 2021; online 14 May 2021)

In the title compound, C14H17N3O5S, the five-membered ring is essentially planar. The substituents at the nitro­gen atoms subtend a C—N—N—S torsion angle of −95.52 (6)°. The amino group forms an intra­molecular hydrogen bond to a sulfonyl oxygen atom; two inter­molecular hydrogen bonds from the amino group, to the other S=O group and to the oxo substituent, form a layer structure parallel to the ab plane. The structure determination confirms that the title compound is N- rather than O-alkyl­ated.

1. Chemical context

Recently we have been attempting to develop synthetic strategies for heterocyclic ring systems containing N-sulfonyl­amino- and N-sulfonyl moieties. The products may be biologically active, displaying for instance anti-viral activity (Azzam et al., 2017[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820-1822.], 2019[Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367-371.], 2020[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 30023-30026.]; Zhu et al., 2013[Zhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146-4149.]; Elgemeie et al., 2017[Elgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug. Des. Dev. Ther. Vol. 11, 3389-3399.], 2019[Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099-1131.]). Also, some of our reported N-aryl­sulfonyl­pyrazole derivatives (Elgemeie et al., 1998[Elgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136-138.], 2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]; Elgemeie & Hanfy, 1999[Elgemeie, G. H. & Hanfy, N. (1999). J. Chem. Res. (S), pp. 385-386.]) proved to be inhibitors of the NS2B-NS3 virus and the enzyme cathepsin B16 (Myers et al., 2007[Myers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III (2007). Bioorg. Med. Chem. Lett. 17, 4761-4766.]; Sidique et al., 2009[Sidique, S., Shiryaev, S. A., Ratnikov, B. I., Herath, A., Su, Y., Strongin, A. Y. & Cosford, N. D. P. (2009). Bioorg. Med. Chem. Lett. 19, 5773-5777.]). In a continuation of our research investigating new approaches to other new derivatives of N-sulfonyl­pyrazoles, seeking various scaffolds for use as encouraging chemotherapeutics (Zhang et al., 2020[Zhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. 2020, 1154-1159.]; Elgemeie & Jones, 2002[Elgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250-o1252.]), we have now synthesized the N1-substituted derivative of N-sulfonyl­pyrazole 1 (the structure of which we have reported; Elgemeie et al., 2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]).

[Scheme 1]

The reaction of 1 with ethyl bromo­acetate 2 in dry N,N-di­methyl­formamide containing anhydrous potassium carbonate at room temperature afforded a product for which two possible isomeric structures, the N-alkyl­ated or O-alkyl­ated N-sulfonyl­pyrazoles 3 or 4, were feasible. The 1H NMR spectrum of the product showed four singlet signals at δ = 2.41, 4.31, 4.40 and 7.15 ppm assigned to CH3, pyrazole-CH, CH2 and NH2 protons, along with triplet and quartet signals at δ = 1.17 and 4.09 ppm, assigned to ethyl groups. The spectroscopic data cannot differentiate between structures 3 and 4. We therefore determined the X-ray structure of this product, which proved to be the N-alkyl­ated-N-sulfonyl­pyrazole 4.

2. Structural commentary

The mol­ecule of compound 4 is shown in Fig. 1[link]. Mol­ecular dimensions, a selection of which are presented in Table 1[link], may be considered normal (e.g. the N1—N2 bond length corres­ponds to a single bond and these atoms display a pyramidal geometry). The substituents S1 and C6 of the five-membered ring, which is effectively planar (r.m.s. deviation 0.026 Å) lie significantly outside the ring plane [by 1.2344 (8) and 0.8468 (19) Å, respectively] in opposite directions; the corresponding torsion angle C6—N1—N2—S1 is −95.52 (6)°. The side chain at N1 exhibits an extended conformation. An intra­molecular hydrogen bond is formed from the amino group to the sulfonyl oxygen atom O4 (Table 2[link]). The ring planes subtend an inter­planar angle of 57.01 (3)°.

Table 1
Selected geometric parameters (Å, °)

N1—C5 1.4157 (9) N2—S1 1.7154 (6)
N1—N2 1.4296 (8) C3—C4 1.3661 (9)
N1—C6 1.4549 (9) C4—C5 1.4203 (10)
N2—C3 1.4273 (8)    
       
C5—N1—N2 107.67 (5) C4—C3—N2 110.21 (6)
C5—N1—C6 117.34 (6) C3—C4—C5 107.94 (6)
N2—N1—C6 115.11 (5) O1—C5—N1 120.24 (7)
C3—N2—N1 105.89 (5) O1—C5—C4 131.82 (7)
C3—N2—S1 116.65 (4) N1—C5—C4 107.90 (6)
N1—N2—S1 109.25 (4)    
       
C6—N1—N2—S1 −95.52 (6) C6—C7—O3—C8 −179.18 (6)
N1—C6—C7—O3 170.80 (6) C9—C8—O3—C7 −168.27 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H01⋯O1i 0.913 (13) 1.897 (13) 2.7884 (8) 164.7 (12)
N3—H02⋯O4 0.861 (13) 2.394 (13) 2.8291 (8) 111.8 (10)
N3—H02⋯O5ii 0.861 (13) 2.294 (13) 3.0139 (8) 141.3 (12)
C6—H6B⋯O4iii 0.99 2.50 3.2642 (9) 133
C8—H8B⋯O1iv 0.99 2.43 3.2663 (11) 142
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z].
[Figure 1]
Figure 1
The structure of compound 4 in the crystal. Ellipsoids represent 50% probability levels. The dashed line indicates an intra­molecular hydrogen bond.

3. Supra­molecular features

The mol­ecules of 4 are linked by two classical hydrogen bonds, from the NH2 hydrogen atoms H01 and H02 to the acceptors O5=S1 and O1=C5, to form layers parallel to the ab plane (Fig. 2[link], Table 2[link]). The hydrogen atom H02 is thus involved in a three-centre hydrogen bond, taking the above-mentioned intra­molecular inter­action into account. The additional `weak' inter­actions H6B⋯O4 (within the layers; operator −x + 2, y − [{1\over 2}], −z + [{1\over 2}]) and H8B⋯O1 (between layers; operator −x + 1, −y + 1, −z) are not shown in the Figure. The shortest distance between ring centroids is 3.97 Å for the ring C10–C15 (operator 2 − x, 1 − y, 1 − z).

[Figure 2]
Figure 2
Packing diagram of compound 4 viewed perpendicular to the ab plane in the region z ≃ 0.25. Dashed lines indicate hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

4. Database survey

A database search (CSD Version 5.41) for the same ring system as in 4, and bearing the same substituents at C5 (oxo) and C3 (amino), gave eight hits involving uncharged species. However, none of these was substituted at both ring nitro­gen atoms. Two (our previous structures: Elgemeie et al., 1998[Elgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136-138.], 2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]) have a hydrogen atom at N1, while the other six have a hydrogen at N2; the other N-substituents are 9-thioxanthenyl (DOJKIW; Kimura, 1986[Kimura, M. (1986). Bull. Chem. Soc. Jpn, 59, 121-125.]), C(=S)NHEt (LUPDUW; Pitucha et al., 2010[Pitucha, M., Mazur, L., Kosikowska, U., Pachuta-Stec, A., Malm, A., Popiołek, Ł. & Rzączyńska, Z. (2010). Heteroat. Chem. 21, 215-221.]), C(=O)NHCH2COOEt (MAVJUK) and C(=O)NH-nBu (MAVKAX; Pitucha et al., 2011[Pitucha, M., Kosikowska, U., Urszula, L. & Malm, A. (2011). Med. Chem. 7, 697-703.]), C(=O)NHCH(Ph)CH3 (TIRVAT; Kaczor et al., 2013[Kaczor, A. A., Wróbel, T., Karczmarzyk, Z., Wysocki, W., Mendyk, E., Poso, A., Matosiuk, D. & Pitucha, M. (2013). J. Mol. Struct. 1051, 188-196.]) and C(O)NH-1-naphthyl (VOQGOZ; Kaczor et al., 2014[Kaczor, A. A., Wróbel, T., Karczmarzyk, Z., Wysocki, W., Fruzinski, A., Brodacka, M., Matosiuk, D. & Pitucha, M. (2014). Lett. Org. Chem. 11, 40-48.]). It is notable that the X—N—N—X (X = H or substituent atom) torsion angles are very variable; in four cases the absolute value lies between 0 and 11°, whereas for the bulky subs­tituents in DOJKIW and VOQGOZ the values are 63.7 and 32.1°, respectively.

5. Synthesis and crystallization

A mixture of 5-amino-1-tosyl-1,2-di­hydro-3H-pyrazol-3-one 1 (0.01 mol), ethyl bromo­acetate 2 (0.01 mol) and anhydrous potassium carbonate (0.01 mol) in N,N-di­methyl­formamide (5 mL) was stirred at room temperature for 3 h. The mixture was poured onto ice–water; the solid thus formed was filtered off and recrystallized from ethanol to give pale yellow crystals in 64% yield, m.p. = 415–416 K. IR (KBr, cm−1): ν 3460, 3297 (NH2), 1752 (ester C=O), 1700 (ring C=O); 1H NMR (DMSO-d6): δ = 1.17 (t, 3H, J = 7.2 Hz, CH3), 2.41 (s, 3H, CH3), 4.09 (q, 2H, J = 7.2 Hz, CH2), 4.31 (s, 1H, CH pyrazole), 4.40 (s, 2H, CH2), 7.15 (s, 2H, NH2), 7.45 (d, 2H, J = 8.4 Hz, Ar), 7.73 (d, 2H, J = 8.4 Hz, Ar). Analysis: calculated C14H17N3O5S (339.36); C, 49.55; H, 5.05; N, 12.38; S, 9.45. Found: C, 49.38; H, 5.23; N, 12.59; S, 9.27%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the NH2 group were refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The Uiso(H) values were fixed at 1.5 (for the methyl H) or 1.2 times the equivalent Ueq value of the parent carbon atoms.

Table 3
Experimental details

Crystal data
Chemical formula C14H17N3O5S
Mr 339.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.1398 (2), 11.1525 (2), 16.3795 (3)
β (°) 97.081 (2)
V3) 1656.85 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.24 × 0.20 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Single source at offset/far, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.805, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 128543, 7466, 6502
Rint 0.040
(sin θ/λ)max−1) 0.825
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.094, 1.05
No. of reflections 7466
No. of parameters 218
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.30
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

Ethyl 2-[3-amino-2-(4-methylbenzenesulfonyl)-5-oxo-2,5-dihydro-1H-pyrazol-1-yl]acetate top
Crystal data top
C14H17N3O5SF(000) = 712
Mr = 339.36Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1398 (2) ÅCell parameters from 78897 reflections
b = 11.1525 (2) Åθ = 2.2–36.1°
c = 16.3795 (3) ŵ = 0.22 mm1
β = 97.081 (2)°T = 100 K
V = 1656.85 (6) Å3Tablet, colourless
Z = 40.24 × 0.20 × 0.08 mm
Data collection top
XtaLAB Synergy, Single source at offset/far, HyPix
diffractometer
7466 independent reflections
Radiation source: micro-focus sealed X-ray tube6502 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.040
ω scansθmax = 35.9°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1415
Tmin = 0.805, Tmax = 1.000k = 1718
128543 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.3217P]
where P = (Fo2 + 2Fc2)/3
7466 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 0.4791 (0.0031) x - 2.3604 (0.0036) y + 15.9693 (0.0013) z = 2.0024 (0.0032)

* 0.0342 (0.0004) N1 * -0.0209 (0.0004) N2 * -0.0003 (0.0004) C3 * 0.0215 (0.0004) C4 * -0.0345 (0.0004) C5 -0.8468 (0.0010) C6 0.0094 (0.0011) N3 -0.1626 (0.0011) O1 1.2344 (0.0008) S1

Rms deviation of fitted atoms = 0.0255

7.3350 (0.0016) x - 0.2526 (0.0037) y + 8.0701 (0.0042) z = 9.4209 (0.0022)

Angle to previous plane (with approximate esd) = 57.006 ( 0.025 )

* -0.0031 (0.0005) C10 * -0.0009 (0.0005) C11 * 0.0057 (0.0006) C12 * -0.0065 (0.0005) C13 * 0.0025 (0.0005) C14 * 0.0022 (0.0005) C15 -0.0668 (0.0010) S1 -0.0236 (0.0012) C16

Rms deviation of fitted atoms = 0.0040

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.71924 (7)0.51318 (5)0.22496 (4)0.01525 (10)
N20.80727 (6)0.61874 (5)0.23976 (3)0.01313 (9)
C30.70693 (7)0.71323 (6)0.25200 (4)0.01349 (10)
C40.56556 (7)0.67098 (6)0.24288 (4)0.01709 (11)
H40.4797360.7160520.2497680.021*
C50.56954 (8)0.54779 (6)0.22128 (4)0.01753 (12)
O10.47057 (7)0.47513 (6)0.19955 (4)0.02624 (12)
N30.75894 (7)0.82301 (5)0.27039 (4)0.01797 (11)
H010.6933 (15)0.8832 (12)0.2762 (8)0.029 (3)*
H020.8476 (15)0.8402 (12)0.2619 (8)0.029 (3)*
C60.75926 (9)0.43604 (6)0.15959 (4)0.01874 (12)
H6A0.6920610.3661140.1538010.022*
H6B0.8607330.4057560.1749820.022*
C70.75148 (8)0.50043 (6)0.07754 (4)0.01746 (12)
C80.81058 (10)0.48513 (7)0.05858 (5)0.02349 (14)
H8A0.8842300.5505040.0564650.028*
H8B0.7123420.5187260.0784010.028*
O20.70022 (8)0.59873 (5)0.06371 (4)0.02588 (12)
O30.80980 (7)0.43200 (5)0.02284 (3)0.02152 (11)
C90.84936 (12)0.38700 (8)0.11506 (5)0.02858 (17)
H9A0.8565120.4203990.1697660.043*
H9B0.7726570.3251360.1191190.043*
H9C0.9441870.3514940.0931110.043*
S10.94519 (2)0.59188 (2)0.31853 (2)0.01400 (4)
O41.02319 (6)0.70299 (5)0.33031 (4)0.02030 (10)
O51.01852 (6)0.48758 (5)0.29250 (3)0.01987 (10)
C100.85810 (7)0.55582 (6)0.40445 (4)0.01440 (10)
C110.83563 (9)0.43557 (6)0.42138 (4)0.01902 (12)
H110.8699680.3746830.3879170.023*
C120.76214 (9)0.40563 (7)0.48806 (5)0.02152 (13)
H120.7474360.3236250.5004520.026*
C130.70971 (8)0.49456 (7)0.53699 (4)0.01845 (12)
C140.73476 (9)0.61451 (7)0.51909 (5)0.02110 (13)
H140.7008330.6754860.5526370.025*
C150.80858 (9)0.64644 (6)0.45295 (4)0.01932 (12)
H150.8249550.7283720.4410580.023*
C160.62816 (9)0.46037 (9)0.60792 (5)0.02581 (15)
H16A0.6991670.4407170.6558670.039*
H16B0.5657440.3904600.5926860.039*
H16C0.5664620.5276460.6213880.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0188 (2)0.0120 (2)0.0151 (2)0.00278 (17)0.00269 (18)0.00152 (17)
N20.0136 (2)0.0110 (2)0.0147 (2)0.00006 (16)0.00156 (16)0.00001 (16)
C30.0135 (2)0.0126 (2)0.0146 (2)0.00057 (18)0.00261 (18)0.00023 (18)
C40.0130 (2)0.0188 (3)0.0197 (3)0.0009 (2)0.0032 (2)0.0015 (2)
C50.0173 (3)0.0193 (3)0.0161 (3)0.0050 (2)0.0029 (2)0.0004 (2)
O10.0242 (3)0.0283 (3)0.0262 (3)0.0140 (2)0.0030 (2)0.0038 (2)
N30.0167 (2)0.0115 (2)0.0261 (3)0.00030 (18)0.0040 (2)0.00131 (19)
C60.0296 (3)0.0122 (2)0.0145 (3)0.0014 (2)0.0028 (2)0.0007 (2)
C70.0228 (3)0.0151 (3)0.0142 (3)0.0014 (2)0.0011 (2)0.0009 (2)
C80.0373 (4)0.0182 (3)0.0157 (3)0.0052 (3)0.0060 (3)0.0023 (2)
O20.0418 (3)0.0172 (2)0.0188 (2)0.0097 (2)0.0042 (2)0.00153 (18)
O30.0327 (3)0.0179 (2)0.0144 (2)0.0073 (2)0.00453 (19)0.00122 (17)
C90.0462 (5)0.0220 (3)0.0196 (3)0.0069 (3)0.0121 (3)0.0011 (3)
S10.01253 (7)0.01380 (7)0.01577 (7)0.00071 (4)0.00218 (5)0.00157 (5)
O40.0162 (2)0.0189 (2)0.0251 (2)0.00522 (17)0.00029 (18)0.00314 (18)
O50.0189 (2)0.0205 (2)0.0210 (2)0.00769 (18)0.00564 (18)0.00221 (18)
C100.0165 (3)0.0128 (2)0.0139 (2)0.00007 (19)0.00173 (19)0.00002 (19)
C110.0266 (3)0.0136 (3)0.0178 (3)0.0004 (2)0.0068 (2)0.0007 (2)
C120.0293 (4)0.0174 (3)0.0188 (3)0.0025 (2)0.0070 (3)0.0021 (2)
C130.0172 (3)0.0239 (3)0.0141 (3)0.0017 (2)0.0014 (2)0.0004 (2)
C140.0251 (3)0.0207 (3)0.0182 (3)0.0013 (2)0.0052 (2)0.0039 (2)
C150.0255 (3)0.0142 (3)0.0187 (3)0.0004 (2)0.0045 (2)0.0026 (2)
C160.0223 (3)0.0393 (4)0.0165 (3)0.0045 (3)0.0053 (2)0.0009 (3)
Geometric parameters (Å, º) top
N1—C51.4157 (9)C13—C141.3944 (11)
N1—N21.4296 (8)C13—C161.5046 (10)
N1—C61.4549 (9)C14—C151.3913 (11)
N2—C31.4273 (8)C4—H40.9500
N2—S11.7154 (6)N3—H010.913 (13)
C3—N31.3343 (8)N3—H020.861 (13)
C3—C41.3661 (9)C6—H6A0.9900
C4—C51.4203 (10)C6—H6B0.9900
C5—O11.2337 (8)C8—H8A0.9900
C6—C71.5177 (10)C8—H8B0.9900
C7—O21.2027 (8)C9—H9A0.9800
C7—O31.3367 (9)C9—H9B0.9800
C8—O31.4601 (9)C9—H9C0.9800
C8—C91.5033 (11)C11—H110.9500
S1—O41.4308 (6)C12—H120.9500
S1—O51.4334 (5)C14—H140.9500
S1—C101.7470 (7)C15—H150.9500
C10—C111.3899 (9)C16—H16A0.9800
C10—C151.3950 (9)C16—H16B0.9800
C11—C121.3914 (10)C16—H16C0.9800
C12—C131.3966 (11)
C5—N1—N2107.67 (5)C3—C4—H4126.0
C5—N1—C6117.34 (6)C5—C4—H4126.0
N2—N1—C6115.11 (5)C3—N3—H01118.5 (8)
C3—N2—N1105.89 (5)C3—N3—H02119.0 (9)
C3—N2—S1116.65 (4)H01—N3—H02119.8 (12)
N1—N2—S1109.25 (4)N1—C6—H6A109.1
N3—C3—C4130.31 (6)C7—C6—H6A109.1
N3—C3—N2119.47 (6)N1—C6—H6B109.1
C4—C3—N2110.21 (6)C7—C6—H6B109.1
C3—C4—C5107.94 (6)H6A—C6—H6B107.8
O1—C5—N1120.24 (7)O3—C8—H8A110.3
O1—C5—C4131.82 (7)C9—C8—H8A110.3
N1—C5—C4107.90 (6)O3—C8—H8B110.3
N1—C6—C7112.54 (6)C9—C8—H8B110.3
O2—C7—O3124.92 (7)H8A—C8—H8B108.5
O2—C7—C6124.94 (7)C8—C9—H9A109.5
O3—C7—C6110.15 (6)C8—C9—H9B109.5
O3—C8—C9107.14 (6)H9A—C9—H9B109.5
C7—O3—C8115.33 (6)C8—C9—H9C109.5
O4—S1—O5119.96 (4)H9A—C9—H9C109.5
O4—S1—N2104.95 (3)H9B—C9—H9C109.5
O5—S1—N2104.19 (3)C10—C11—H11120.5
O4—S1—C10111.08 (3)C12—C11—H11120.5
O5—S1—C10109.21 (3)C11—C12—H12119.6
N2—S1—C10106.30 (3)C13—C12—H12119.6
C11—C10—C15121.27 (6)C15—C14—H14119.4
C11—C10—S1118.43 (5)C13—C14—H14119.4
C15—C10—S1120.27 (5)C14—C15—H15120.6
C10—C11—C12119.05 (6)C10—C15—H15120.6
C11—C12—C13120.87 (7)C13—C16—H16A109.5
C14—C13—C12118.93 (6)C13—C16—H16B109.5
C14—C13—C16121.02 (7)H16A—C16—H16B109.5
C12—C13—C16120.05 (7)C13—C16—H16C109.5
C15—C14—C13121.14 (7)H16A—C16—H16C109.5
C14—C15—C10118.72 (7)H16B—C16—H16C109.5
C5—N1—N2—C35.12 (7)C3—N2—S1—O458.13 (5)
C6—N1—N2—C3138.08 (6)N1—N2—S1—O4178.12 (4)
C5—N1—N2—S1131.52 (5)C3—N2—S1—O5174.95 (5)
C6—N1—N2—S195.52 (6)N1—N2—S1—O554.96 (5)
N1—N2—C3—N3177.46 (6)C3—N2—S1—C1059.64 (5)
S1—N2—C3—N355.69 (7)N1—N2—S1—C1060.35 (5)
N1—N2—C3—C41.86 (7)O4—S1—C10—C11151.48 (6)
S1—N2—C3—C4123.63 (5)O5—S1—C10—C1116.96 (7)
N3—C3—C4—C5178.65 (7)N2—S1—C10—C1194.90 (6)
N2—C3—C4—C52.13 (8)O4—S1—C10—C1530.51 (7)
N2—N1—C5—O1171.51 (6)O5—S1—C10—C15165.03 (6)
C6—N1—C5—O139.75 (9)N2—S1—C10—C1583.11 (6)
N2—N1—C5—C46.48 (7)C15—C10—C11—C120.06 (11)
C6—N1—C5—C4138.24 (6)S1—C10—C11—C12177.93 (6)
C3—C4—C5—O1172.33 (8)C10—C11—C12—C130.78 (12)
C3—C4—C5—N15.35 (8)C11—C12—C13—C141.31 (12)
C5—N1—C6—C769.88 (8)C11—C12—C13—C16178.92 (7)
N2—N1—C6—C758.40 (8)C12—C13—C14—C151.01 (12)
N1—C6—C7—O29.23 (11)C16—C13—C14—C15179.22 (7)
N1—C6—C7—O3170.80 (6)C13—C14—C15—C100.20 (11)
O2—C7—O3—C80.85 (12)C11—C10—C15—C140.35 (11)
C6—C7—O3—C8179.18 (6)S1—C10—C15—C14177.60 (6)
C9—C8—O3—C7168.27 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H01···O1i0.913 (13)1.897 (13)2.7884 (8)164.7 (12)
N3—H02···O40.861 (13)2.394 (13)2.8291 (8)111.8 (10)
N3—H02···O5ii0.861 (13)2.294 (13)3.0139 (8)141.3 (12)
C6—H6B···O4iii0.992.503.2642 (9)133
C8—H8B···O1iv0.992.433.2663 (11)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y+1, z.
 

References

First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 30023–30026.  CAS Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug. Des. Dev. Ther. Vol. 11, 3389–3399.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099–1131.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Hanfy, N. (1999). J. Chem. Res. (S), pp. 385–386.  Google Scholar
First citationElgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250–o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90–92.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaczor, A. A., Wróbel, T., Karczmarzyk, Z., Wysocki, W., Fruzinski, A., Brodacka, M., Matosiuk, D. & Pitucha, M. (2014). Lett. Org. Chem. 11, 40–48.  Web of Science CrossRef CAS Google Scholar
First citationKaczor, A. A., Wróbel, T., Karczmarzyk, Z., Wysocki, W., Mendyk, E., Poso, A., Matosiuk, D. & Pitucha, M. (2013). J. Mol. Struct. 1051, 188–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationKimura, M. (1986). Bull. Chem. Soc. Jpn, 59, 121–125.  CSD CrossRef CAS Web of Science Google Scholar
First citationMyers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III (2007). Bioorg. Med. Chem. Lett. 17, 4761–4766.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPitucha, M., Kosikowska, U., Urszula, L. & Malm, A. (2011). Med. Chem. 7, 697–703.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPitucha, M., Mazur, L., Kosikowska, U., Pachuta-Stec, A., Malm, A., Popiołek, Ł. & Rzączyńska, Z. (2010). Heteroat. Chem. 21, 215–221.  CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSidique, S., Shiryaev, S. A., Ratnikov, B. I., Herath, A., Su, Y., Strongin, A. Y. & Cosford, N. D. P. (2009). Bioorg. Med. Chem. Lett. 19, 5773–5777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationZhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. 2020, 1154–1159.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146–4149.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds