research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-di­carb­­oxy­lic acid and DEF is N,N-di­ethyl­formamide)

CROSSMARK_Color_square_no_text.svg

aUniversité de Toulouse, UPS, Institut de Chimie de Toulouse, ICT FR 2599, 118 route de Narbonne, F-31062 Toulouse, France
*Correspondence e-mail: pascal.hoffmann@univ-tlse3.fr

Edited by M. Zeller, Purdue University, USA (Received 3 October 2019; accepted 16 October 2019; online 29 October 2019)

A zinc metal–organic framework, namely poly[bis­(N,N-di­ethyl­formamide)(μ4-naphthalene-2,6-di­carboxyl­ato)(μ2-naphthalene-2,6-di­carboxyl­ato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-di­carb­oxy­lic acid and zinc(II) acetate as the metal source in N,N-di­ethyl­formamide containing small amounts of formic acid.

1. Chemical context

In a preceding study, we showed how the presence of a small amount of added organic acids in the solvent N,N-di­ethyl­formamide (DEF), under solvothermal conditions, can be crucial in steering the production of new MOF (metal–organic framework) structures, as exemplified by the formation of two new zinc–terephthalate MOFs based on the trinuclear Zn3(O2CR)6 secondary building unit (SBU) and containing the formate anion, solvothermally obtained from the well-studied MOF-5 system Zn/H2BDC/DEF (H2BDC = benzene-1,4-dicarboxylic acid) in the presence of small amounts of added formic acid (Saffon-Merceron et al., 2015[Saffon-Merceron, N., Barthélémy, M.-C., Laurent, C., Fabing, I., Hoffmann, P. & Vigroux, A. (2015). Inorg. Chim. Acta, 426, 15-19.]). Here, another ligand, NDC2− (H2NDC = naphthalene-2,6-di­carb­oxy­lic acid) is considered to further study the influence of added formic acid in DEF in MOF synthesis. The NDC2− ligand has been widely used previously to prepare a number of MOFs (Gangu et al., 2017[Gangu, K. K., Maddila, S. & Jonnalagadda, S. B. (2017). Inorg. Chim. Acta, 466, 308-323.]), including IRMOF-8 belonging to the isoreticular MOF series IRMOF-1-16, which have the same underlying topology as MOF-5 with oxygen-centred Zn4O tetra­hedra as nodes but linked by different organic mol­ecules (Rosi et al., 2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]). As a control, we first successfully synthesized IRMOF-8, as already described, from H2NDC and Zn(NO3)2·6H2O in DEF using a common solvothermal route (Rowsell et al., 2004[Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666-5667.]). Under the same experimental conditions but in DEF containing ca 1.8% added formic acid, an unidentified crystalline powder was obtained, seemingly in a pure phase, that did not correspond to any known NDC-based MOF. However, in the presence of zinc(II) acetate as the metal source instead of zinc(II) nitrate, we successfully isolated a new 2D coordination network, [Zn(NDC)(DEF)]n (1), identified by satisfactory elemental analysis and single-crystal X-ray diffraction.

2. Structural commentary

Complex 1 crystallizes in the triclinic P[\overline{1}] space group, with an asymmetric unit containing one Zn2+ cation, one fully deprotonated NDC2− ligand and a Zn-coordinated DEF mol­ecule. Each ZnII ion is penta­coordinated by five O atoms [Zn1—O1 = 2.543 (5) Å, Zn1—O2 = 1.949 (2) Å, Zn1—O3 = 2.026 (2) Å, Zn1—O4(DEF) = 1.979 (2) Å and Zn1—O5 = 1.980 (2) Å] from three individual NDC2− anions and one DEF mol­ecule in a tetra­gonal pyramidal configuration. The SBU consists of doubly-bridged dinuclear units of ZnII atoms in a `windmill' fashion (Fig. 1[link]), with a Zn⋯Zn distance of 3.652 (1) Å, where each pair of Zn atoms is linked by two NDC2− anions and each Zn atom is linked by a further NDC2− anion and a DEF mol­ecule (Fig. 2[link]). The two carboxyl­ate groups of the same NDC2− anion adopt either a μ1-η1:η1 (O1 and O2) or a μ2-η1:η1 (O3 and O5) coordination mode.

[Scheme 1]
[Figure 1]
Figure 1
The structural model of the zinc windmill (or pw2) SBU found in MOF 1 (left) and of a typical zinc four-blade paddlewheel (pw4) cluster (right).
[Figure 2]
Figure 2
The mol­ecular structure of MOF 1, with displacement ellipsoids drawn at the 50% probability level, showing the labelling sheme and the disordered ethyl group of DEF. [Symmetry codes: (i) −x + 1, −y − 1, −z + 1; (ii) x + 1, y − 1, z; (iii) −x − 1, −y, −z + 2; (iv) x − 1, y, z + 1; (v) −x, −y, −z + 1.]

3. Supra­molecular features

The structure of 1 shows a three-dimensional (3D) supramolecular framework built of zigzag-shaped two-dimensional (2D) stacked layers. Neighbouring 2D layers are inter­connected through nonclassical hydrogen-bonding inter­actions between carboxyl­ate O atoms (O1 and O3) and β-H atoms of NDC2− ligands with COO⋯H—Cβ—NDC distances of 3.307 (4) (O1—C4) and 3.548 (4) Å (O3—C12). Other inter­actions contributing to the stability of the framework involve Hcentroidπ inter­actions of H16—C16 (DEF hydrogens) and the centroids [Cg1iii is the centroid of the C2–C5/C5v/C6v ring and Cg2iv is the centroid of the C5/C6/C2v–C5v ring; symmetry codes: (iii) x + 1, y + 1, z; (iv) −x, −y + 1, −z + 2; (v) −x − 1, −y, −z + 2] of the aromatic rings of the NDC2− ligands, with Cg⋯H distances of 2.99 Å (Fig. 3[link] and Table 1[link]). The layers are stacked in a self-locking fashion in a 3D supra­molecular framework (Fig. 4[link]), which has open channels with dimensions of approximately 7.85 × 12.55 Å2 largely occupied by the Zn-coordinated DEF mol­ecules (Fig. 5[link]). It is noteworthy that since 1 has been obtained in a DEF solution containing small amounts of formic acid, formate ligands are not present in the framework.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C5/C5vii/C6vii and C5/C6/C2vii–C5vii rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1iv 0.95 2.39 3.307 (4) 161
C12—H12⋯O3v 0.95 2.63 3.548 (4) 156
C16—H16⋯Cg1vi 0.95 2.99 3.520 (17) 114
C16—H16⋯Cg2vii 0.95 2.99 3.520 (17) 114
Symmetry codes: (iv) x-1, y, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) -x, -y+1, -z+2.
[Figure 3]
Figure 3
Hcentroidπ inter­action found in MOF 1 with DEF H atoms (H16) located near the centroid of the NDC2− aromatic ring (all H atoms have been omitted for clarity, except for the DEF-H16 H atoms involved in the inter­actions).
[Figure 4]
Figure 4
View of the two-dimensional layers in MOF 1 stacked in a self-locking fashion yielding the three-dimensional supra­molecular framework.
[Figure 5]
Figure 5
View of the two-dimensional stacked layers in MOF 1 along the crystallographic (a) a, (b) b and (c) c axes.

4. Database survey

Naphthalene di­carb­oxy­lic acid derivatives (H2NDCs), including 1,4-, 1,8- and 2,6-NDC, have been, due to their stability, richness in coordination modes and structural rigidity, widely used as organic mol­ecules in the synthesis of novel MOF structures with a variety of metal ions, such as ZnII, CdII, CoII, NiII, MnII or AgI. Among all the 2,6-NDC/Zn-based MOFs, two are closely related to MOF 1, i.e. a MOF of formula [Zn2(2,6-NDC)2(DMF)2]n (Yang et al., 2013[Yang, S. Y., Yuan, H. B., Xu, X. B. & Huang, R. B. (2013). Inorg. Chim. Acta, 403, 53-62.]), in which the two carboxyl­ate groups of all the NDC ligands have two different coordination modes (μ1-η1:η1 and μ2-η1:η1), and MOF-105 and its derivatives of generic formula [Zn2(2,6-NDC)2(DMF)2] (Eddaoudi et al., 2002[Eddaoudi, M., Kim, J., Vodak, D., Sudik, A., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Proc. Natl Acad. Sci. USA, 99, 4900-4904.]; Devi et al., 2004[Devi, R. N., Edgar, M., Gonzalez, J., Slawin, A. M. Z., Tunstall, D. P., Grewal, P., Cox, P. A. & Wright, P. A. (2004). J. Phys. Chem. B, 108, 535-543.]; Shahangi Shirazi et al., 2015[Shahangi Shirazi, F. & Akhbari, K. (2015). Inorg. Chim. Acta, 436, 1-6.]; Yue et al., 2015[Yue, H., Shi, Z., Wang, Q., Du, T., Ding, Y., Zhang, J., Huo, N. & Yang, S. (2015). RSC Adv. 5, 75653-75658.]), in which all NDC-carboxyl­ates have a μ2-η1:η1 coordination mode, with a typical pw4 paddle-wheel structure motif, [M2(CO2)4]. For MOF 1, the two carboxyl­ate groups of the same NDC2− ligand adopt either a μ1-η1:η1 (O1 and O2) or a μ2-η1:η1 (O3 and O5) coordination mode, giving an uncommon pw2 paddle-wheel (`windmill') structural feature, [M2(CO2)2].

5. Synthesis and crystallization

MOF 1 was synthesized from naphthalene-2,6-di­carb­oxy­lic acid and zinc(II) acetate. 2,6-H2NDC (87.3 mg, 0.4 mmol, 1.0 equiv.) and Zn(OAc)2·2H2O (224 mg, mol, 2.5 equiv.) were dissolved in DEF (10 ml) containing formic acid (185 µl, 12 equiv.) and sealed in a glass vial. The vial was heated in an oven to 110 °C for 17 h. After cooling to room temperature, the reaction was allowed to stand until colorless crystals suitable for X-ray diffraction formed. For further characterizations, the crystals were collected by filtration, washed with DEF several times, and dried at 373 K under vacuum. Ele­mental analysis (%) for C17H17NO5Zn based on the formula [Zn(NDC)(DEF)] found (calculated): C 53.00 (53.63), H 4.47 (4.50), N 3.39 (3.68), Zn 17.51 (17.17). FT–IR (cm−1): 2979, 2938, 1647, 1602, 1586, 1557, 1494, 1460, 1406, 1385, 1361, 1348. The identity of the as-synthesized bulk material was confirmed by com­paring the powder X-ray diffraction (PXRD) pattern with that simulated from the crystal structure (Fig. 6[link]). After heating a sample of 1 at 463 K under vaccum for 8 h, coordinated DEF mol­ecules were eliminated, as evidenced by FT–IR (loss of bands at 2979, 2938 and 1647 cm−1). Elemental analysis (%) for C12H6O4Zn based on the formula [Zn(NDC)] found (calculated): C 48.85 (51.56), H 2.75 (2.16), N 0.22 (0.00), Zn 21.47 (23.39). It should be noted that after removal of DEF, MOF 1 lost its crystallinity, as evidenced by the PXRD pattern.

[Figure 6]
Figure 6
PXRD patterns (a) simulated from the single-crystal data of 1 and (b) measured from a sample of 1 prepared from 2,6-H2NDC and Zn(OAc)2 in DEF containing formic acid.

6. Refinement

The ethyl groups of DEF were disordered over two positions, for which the occupancies were refined, converging to 0.51 and 0.49. The SAME, DELU and SIMU restraints were applied to model the disorder (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). All H atoms were fixed geometrically and treated as riding, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.0 Å (CH), with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C12H6O4)(C15H11NO)]
Mr 380.68
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 7.9134 (5), 8.3006 (5), 12.6413 (8)
α, β, γ (°) 97.873 (4), 91.620 (4), 91.991 (5)
V3) 821.57 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.52
Crystal size (mm) 0.10 × 0.04 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.863, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 13141, 3336, 2436
Rint 0.075
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.081, 1.00
No. of reflections 3336
No. of parameters 237
No. of restraints 41
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.37
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Bruker, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[bis(N,N-diethylformamide)(µ4-naphthalene-2,6-dicarboxylato)(µ2-naphthalene-2,6-dicarboxylato)dizinc(II)] top
Crystal data top
[Zn(C12H6O4)(C15H11NO)]Z = 2
Mr = 380.68F(000) = 392
Triclinic, P1Dx = 1.539 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9134 (5) ÅCell parameters from 1701 reflections
b = 8.3006 (5) Åθ = 2.5–21.5°
c = 12.6413 (8) ŵ = 1.52 mm1
α = 97.873 (4)°T = 193 K
β = 91.620 (4)°Block, colourless
γ = 91.991 (5)°0.10 × 0.04 × 0.04 mm
V = 821.57 (9) Å3
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
3336 independent reflections
Radiation source: fine-focus selaed tube2436 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.075
phi and ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.863, Tmax = 0.942k = 1010
13141 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0318P)2]
where P = (Fo2 + 2Fc2)/3
3336 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.33 e Å3
41 restraintsΔρmin = 0.37 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.02528 (5)0.13460 (5)0.62683 (3)0.02329 (12)
O10.0138 (3)0.0539 (3)0.8118 (2)0.0495 (7)
O20.1959 (3)0.1010 (3)0.68613 (17)0.0311 (5)
O30.0472 (2)0.1661 (2)0.52376 (16)0.0249 (5)
O40.1080 (3)0.3581 (3)0.68413 (19)0.0376 (6)
O50.2353 (2)0.0121 (2)0.60995 (16)0.0267 (5)
C10.1604 (4)0.0679 (4)0.7800 (3)0.0292 (8)
C20.3060 (4)0.0478 (4)0.8506 (2)0.0229 (7)
C30.4729 (4)0.0766 (4)0.8157 (3)0.0259 (7)
H30.4914590.1066850.7465260.031*
C40.6065 (4)0.0621 (4)0.8792 (2)0.0253 (7)
H40.7167700.0838390.8545270.030*
C50.5832 (3)0.0151 (3)0.9818 (2)0.0204 (7)
C60.7197 (4)0.0032 (4)1.0501 (2)0.0247 (7)
H60.8313080.0160421.0264740.030*
C70.1971 (4)0.1257 (4)0.5574 (2)0.0232 (7)
C80.3342 (4)0.2464 (4)0.5386 (2)0.0231 (7)
C90.2888 (4)0.4062 (4)0.5012 (2)0.0266 (7)
H90.1733290.4370950.4845640.032*
C100.4136 (4)0.5243 (4)0.4875 (2)0.0241 (7)
C110.5046 (4)0.1977 (4)0.5621 (3)0.0281 (8)
H110.5340200.0868050.5870330.034*
C120.6283 (4)0.3091 (4)0.5492 (3)0.0285 (8)
H120.7431930.2748610.5648350.034*
C130.2535 (5)0.4026 (4)0.7188 (3)0.0369 (9)
H130.3413090.3279890.7057020.044*
C140.1574 (6)0.6627 (5)0.7929 (4)0.0628 (13)
H14A0.0783130.6525710.7299740.075*
H14B0.2080530.7746810.8037170.075*
C150.0611 (7)0.6341 (6)0.8898 (4)0.0970 (18)
H15A0.0130800.5223780.8799730.145*
H15B0.0303640.7107610.8998580.145*
H15C0.1378290.6503640.9529350.145*
N10.2922 (4)0.5454 (4)0.7719 (2)0.0448 (8)
C160.4576 (17)0.6215 (19)0.815 (2)0.061 (4)0.516 (8)
H16A0.4873790.7137300.7756390.074*0.516 (8)
H16B0.4478520.6650140.8909590.074*0.516 (8)
C170.5911 (12)0.5053 (11)0.8035 (8)0.065 (3)0.516 (8)
H17A0.5632720.4152350.8433780.098*0.516 (8)
H17B0.6983010.5592710.8317500.098*0.516 (8)
H17C0.6018840.4629950.7277910.098*0.516 (8)
C16'0.4774 (18)0.575 (2)0.8054 (19)0.062 (4)0.484 (8)
H16C0.5448740.4963330.7600030.074*0.484 (8)
H16D0.5136760.6856740.7922200.074*0.484 (8)
C17'0.5149 (13)0.5600 (11)0.9178 (7)0.074 (3)0.484 (8)
H17D0.4269860.6117450.9622050.110*0.484 (8)
H17E0.6250430.6136890.9398540.110*0.484 (8)
H17F0.5178780.4446370.9265280.110*0.484 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0191 (2)0.0234 (2)0.0272 (2)0.00401 (14)0.00315 (15)0.00116 (15)
O10.0203 (14)0.086 (2)0.0477 (17)0.0087 (13)0.0085 (12)0.0236 (15)
O20.0277 (13)0.0404 (14)0.0263 (13)0.0025 (10)0.0067 (11)0.0068 (11)
O30.0184 (12)0.0277 (12)0.0302 (13)0.0040 (9)0.0037 (10)0.0087 (10)
O40.0358 (15)0.0268 (13)0.0474 (16)0.0019 (10)0.0016 (12)0.0052 (11)
O50.0258 (12)0.0249 (13)0.0286 (13)0.0078 (9)0.0039 (10)0.0010 (10)
C10.0237 (19)0.0315 (19)0.033 (2)0.0043 (14)0.0064 (16)0.0037 (16)
C20.0208 (17)0.0233 (17)0.0232 (18)0.0008 (13)0.0028 (14)0.0022 (14)
C30.0250 (18)0.0267 (18)0.0270 (19)0.0046 (14)0.0008 (15)0.0064 (15)
C40.0172 (17)0.0308 (19)0.0277 (19)0.0021 (13)0.0044 (14)0.0042 (15)
C50.0170 (16)0.0211 (16)0.0222 (17)0.0014 (12)0.0003 (13)0.0003 (13)
C60.0143 (16)0.0288 (18)0.0308 (19)0.0031 (13)0.0004 (14)0.0027 (15)
C70.0287 (19)0.0256 (18)0.0176 (17)0.0068 (14)0.0075 (14)0.0079 (14)
C80.0220 (17)0.0257 (18)0.0224 (18)0.0067 (13)0.0039 (14)0.0046 (14)
C90.0188 (17)0.0334 (19)0.0284 (19)0.0058 (14)0.0032 (14)0.0050 (15)
C100.0215 (17)0.0276 (18)0.0241 (17)0.0035 (13)0.0036 (14)0.0049 (14)
C110.0274 (19)0.0260 (19)0.031 (2)0.0038 (14)0.0026 (15)0.0018 (15)
C120.0233 (18)0.0271 (18)0.034 (2)0.0003 (14)0.0039 (15)0.0011 (15)
C130.042 (2)0.032 (2)0.037 (2)0.0006 (16)0.0029 (18)0.0063 (17)
C140.089 (4)0.027 (2)0.067 (3)0.006 (2)0.010 (3)0.012 (2)
C150.111 (5)0.084 (4)0.087 (4)0.011 (3)0.037 (4)0.023 (3)
N10.057 (2)0.0383 (19)0.0367 (19)0.0130 (16)0.0097 (16)0.0030 (15)
C160.077 (6)0.051 (8)0.053 (6)0.018 (5)0.018 (5)0.006 (6)
C170.063 (6)0.069 (6)0.066 (6)0.014 (4)0.011 (5)0.022 (5)
C16'0.076 (6)0.052 (9)0.055 (6)0.028 (6)0.023 (6)0.013 (7)
C17'0.100 (7)0.061 (6)0.059 (6)0.021 (5)0.016 (5)0.015 (5)
Geometric parameters (Å, º) top
Zn1—O21.949 (2)C11—C121.368 (4)
Zn1—O41.979 (2)C11—H110.9500
Zn1—O51.980 (2)C12—H120.9500
Zn1—O3i2.026 (2)C13—N11.302 (4)
Zn1—C12.571 (3)C13—H130.9500
O1—C11.231 (4)C14—N11.474 (5)
O2—C11.280 (4)C14—C151.503 (6)
O3—C71.267 (3)C14—H14A0.9900
O4—C131.246 (4)C14—H14B0.9900
O5—C71.264 (4)C15—H15A0.9800
C1—C21.496 (4)C15—H15B0.9800
C2—C6ii1.368 (4)C15—H15C0.9800
C2—C31.419 (4)N1—C161.488 (11)
C3—C41.358 (4)N1—C16'1.517 (11)
C3—H30.9500C16—C171.452 (17)
C4—C51.413 (4)C16—H16A0.9900
C4—H40.9500C16—H16B0.9900
C5—C61.420 (4)C17—H17A0.9800
C5—C5ii1.424 (5)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C7—C81.504 (4)C16'—C17'1.47 (2)
C8—C91.378 (4)C16'—H16C0.9900
C8—C111.406 (4)C16'—H16D0.9900
C9—C101.413 (4)C17'—H17D0.9800
C9—H90.9500C17'—H17E0.9800
C10—C12iii1.422 (4)C17'—H17F0.9800
C10—C10iii1.426 (6)
O2—Zn1—O4107.22 (9)C8—C11—H11119.8
O2—Zn1—O5136.08 (9)C11—C12—C10iii120.5 (3)
O4—Zn1—O5103.46 (9)C11—C12—H12119.7
O2—Zn1—O3i99.73 (8)C10iii—C12—H12119.7
O4—Zn1—O3i100.55 (9)O4—C13—N1123.8 (3)
O5—Zn1—O3i104.71 (8)O4—C13—H13118.1
O2—Zn1—C128.93 (9)N1—C13—H13118.1
O4—Zn1—C1100.44 (10)N1—C14—C15111.5 (4)
O5—Zn1—C1115.09 (9)N1—C14—H14A109.3
O3i—Zn1—C1128.55 (9)C15—C14—H14A109.3
C1—O2—Zn1103.60 (19)N1—C14—H14B109.3
C7—O3—Zn1i119.47 (19)C15—C14—H14B109.3
C13—O4—Zn1127.3 (2)H14A—C14—H14B108.0
C7—O5—Zn1107.70 (19)C14—C15—H15A109.5
O1—C1—O2122.1 (3)C14—C15—H15B109.5
O1—C1—C2121.0 (3)H15A—C15—H15B109.5
O2—C1—C2116.8 (3)C14—C15—H15C109.5
O1—C1—Zn174.8 (2)H15A—C15—H15C109.5
O2—C1—Zn147.47 (15)H15B—C15—H15C109.5
C2—C1—Zn1163.8 (2)C13—N1—C14118.8 (3)
C6ii—C2—C3119.1 (3)C13—N1—C16131.2 (8)
C6ii—C2—C1120.6 (3)C14—N1—C16110.0 (8)
C3—C2—C1120.3 (3)C13—N1—C16'115.1 (9)
C4—C3—C2121.2 (3)C14—N1—C16'126.1 (9)
C4—C3—H3119.4C17—C16—N1111.5 (12)
C2—C3—H3119.4C17—C16—H16A109.3
C3—C4—C5120.7 (3)N1—C16—H16A109.3
C3—C4—H4119.7C17—C16—H16B109.3
C5—C4—H4119.7N1—C16—H16B109.3
C4—C5—C6122.4 (3)H16A—C16—H16B108.0
C4—C5—C5ii119.0 (3)C16—C17—H17A109.5
C6—C5—C5ii118.6 (3)C16—C17—H17B109.5
C2ii—C6—C5121.4 (3)H17A—C17—H17B109.5
C2ii—C6—H6119.3C16—C17—H17C109.5
C5—C6—H6119.3H17A—C17—H17C109.5
O5—C7—O3122.1 (3)H17B—C17—H17C109.5
O5—C7—C8118.2 (3)C17'—C16'—N1114.1 (15)
O3—C7—C8119.6 (3)C17'—C16'—H16C108.7
C9—C8—C11120.8 (3)N1—C16'—H16C108.7
C9—C8—C7118.7 (3)C17'—C16'—H16D108.7
C11—C8—C7120.5 (3)N1—C16'—H16D108.7
C8—C9—C10120.1 (3)H16C—C16'—H16D107.6
C8—C9—H9119.9C16'—C17'—H17D109.5
C10—C9—H9119.9C16'—C17'—H17E109.5
C9—C10—C12iii121.8 (3)H17D—C17'—H17E109.5
C9—C10—C10iii119.2 (4)C16'—C17'—H17F109.5
C12iii—C10—C10iii118.9 (3)H17D—C17'—H17F109.5
C12—C11—C8120.4 (3)H17E—C17'—H17F109.5
C12—C11—H11119.8
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+2; (iii) x+1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C5/C5ii/C6ii and C5/C6/C2ii–C5ii rings, respectively. [Symmetry code: (ii) -x-1, -y, -z+2.]
D—H···AD—HH···AD···AD—H···A
C4—H4···O1iv0.952.393.307 (4)161
C12—H12···O3v0.952.633.548 (4)156
C16—H16···Cg1vi0.952.993.520 (17)114
C16—H16···Cg2vii0.952.993.520 (17)114
Symmetry codes: (iv) x1, y, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x, y+1, z+2.
 

References

First citationBruker (2008). APEX2, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevi, R. N., Edgar, M., Gonzalez, J., Slawin, A. M. Z., Tunstall, D. P., Grewal, P., Cox, P. A. & Wright, P. A. (2004). J. Phys. Chem. B, 108, 535–543.  CrossRef CAS Google Scholar
First citationEddaoudi, M., Kim, J., Vodak, D., Sudik, A., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Proc. Natl Acad. Sci. USA, 99, 4900–4904.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGangu, K. K., Maddila, S. & Jonnalagadda, S. B. (2017). Inorg. Chim. Acta, 466, 308–323.  CrossRef CAS Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666–5667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaffon-Merceron, N., Barthélémy, M.-C., Laurent, C., Fabing, I., Hoffmann, P. & Vigroux, A. (2015). Inorg. Chim. Acta, 426, 15–19.  CAS Google Scholar
First citationShahangi Shirazi, F. & Akhbari, K. (2015). Inorg. Chim. Acta, 436, 1–6.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S. Y., Yuan, H. B., Xu, X. B. & Huang, R. B. (2013). Inorg. Chim. Acta, 403, 53–62.  CrossRef CAS Google Scholar
First citationYue, H., Shi, Z., Wang, Q., Du, T., Ding, Y., Zhang, J., Huo, N. & Yang, S. (2015). RSC Adv. 5, 75653–75658.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds