research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of (RS)-7-chloro-2-(2,5-di­meth­­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Physics, National Institute of Engineering, Mysore-570 008, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 13 May 2019; accepted 14 May 2019; online 21 May 2019)

In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-di­meth­oxy­phenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links mol­ecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of mol­ecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.

1. Chemical context

Quinazoline-4-one and its derivatives constitute an important class of fused heterocycles, which are found in more than two hundred naturally occurring alkaloids. In addition, 2,3-di­hydro­quinazolin-4(1H)-one is a privileged scaffold in drug design (Badolato et al., 2018[Badolato, M., Aiello, F. & Neamati, N. (2018). RSC Adv. 8, 20894-20921.]). Despite this, rather few structures have been published for compounds containing this heterocyclic nucleus (see Section 4 below), and with these considerations in mind, we now report the mol­ecular and supra­molecular structure of (RS)-7-chloro-2-(2,5-di­meth­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one (I)[link] (Fig. 1[link]). The compound was prepared using a recently published (Narasimhamurthy et al., 2014[Narasimhamurthy, K. H., Chandrappa, S., Sharath Kumar, K. S., Harsha, K. B., Ananda, H. & Rangappa, K. S. (2014). RSC Adv. 4, 34479-34486.]) one-step process, which employs a base-promoted cyclization reaction between a (di­bromo­meth­yl)arene, here 2-(di­bromo­meth­yl)-1,4-di­meth­oxy­benz­ene, and a 2-amino­benzamide, here 2-amino-4-chloro­benzamide, which after a straightforward purification step gives the product (I)[link] in 79% yield.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

The mol­ecule of compound (I)[link] contains a stereogenic centre at atom C2, and the reference mol­ecule was selected as one having the R configuration at this atom: the centrosymmetric space group confirms that compound (I)[link] has crystallized as a racemic mixture. The heterocyclic ring in compound (I)[link] adopts a conformation close to the envelope form, in which this ring is folded across the line N1⋯N3 (Fig. 1[link]). The ring-puckering parameters, calculated for the atom sequence (N1,C2,N3,C4,C4A,C8A) in the R-enanti­omer are Q = 0.258 (2) Å, θ = 121.8 (4)° and φ = 219.3 (6)°. For the ideal envelope form, the puckering angles take the values θ = 54.7° (equivalent to 125.3°) and φ = (60k)°, where k represents an integer (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). The r.m.s. deviation of the atoms N1, N3, C4, C4A, C8A from their mean plane is only 0.035 Å, with a maximum deviation of 0.0403 (11) Å for atom N3. However, atom C2 is displaced from this plane by 0.355 (3) Å. The 2,5-di­meth­oxy­phenyl substituent occupies the quasi-axial site at atom C2. Within this unit, the two meth­oxy C atoms are almost coplanar with the aryl ring: the deviations from the mean plane of this ring are 0.020 (5) Å for atom C221 and 0.101 (5) Å for atom C251. Associated with this planarity, the two exocyclic C—C—O angles at atoms C22 and C25 are significantly different, by 11.9° at C22 and by 8.2° at atoms C25, as previously observed in planar or near-planar alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]).

3. Supra­molecular features

The structure of compound (I)[link] contains just two N—H⋯O hydrogen bonds (Table 1[link]) but these are sufficient to link all of the mol­ecules into a three-dimensional framework structure, whose formation is readily analysed in terms of the actions of the two individual hydrogen bonds. The hydrogen bond having atom N1 as the donor links mol­ecules related by the 41 screw axis along (0.25, 0.5, z) into a C(6) chain (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [001] direction (Fig. 2[link]). Four chains of this type pass through each unit cell. The hydrogen bond having atom N3 as the donor links inversion-related pairs of mol­ecules to form a cyclic dimer characterized by an R22(8) motif (Fig. 3[link]). This inter­action directly links the C(6) chain around the 41 screw axis ([1\over4], [1\over2], z) with four similar chains around the screw axes along ([3\over4], [1\over2], z), (−[1\over4], [1\over2], z), ([1\over4], 0, z) and ([1\over4], 1, z) (Fig. 4[link]). Propagation of these hydrogen bonds by the space-group symmetry operations links all of the C(6) chains, so linking all of the mol­ecules into a very elegant three-dimensional structure generated by only two hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.80 (3) 2.39 (3) 3.161 (3) 162 (2)
N3—H3⋯O4ii 0.83 (3) 2.04 (3) 2.854 (3) 166 (2)
Symmetry codes: (i) [-y+{\script{3\over 4}}, x+{\script{1\over 4}}, z+{\script{1\over 4}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded C(6) chain running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the formation of a cyclic hydrogen-bonded dimer. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position ([{1\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] − z).
[Figure 4]
Figure 4
A projection along [001] of part of the crystal structure of compound (I)[link] showing the linking of the C(6) chains by the R22(8) rings. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, only the heterocyclic ring, along with its hydrogen-bond acceptors and donors, is shown for each mol­ecule.

4. Database survey

It is of inter­est briefly to compare the mol­ecular and supra­molecular structure of (I)[link] reported here with those of some related structures. In (RS)-2-(2-chloro­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one (Li & Feng, 2009[Li, M.-J. & Feng, C.-J. (2009). Acta Cryst. E65, o2145.]), the heterocyclic ring has a screw–boat conformation, as opposed to the envelope form in (I)[link]. As in (I)[link], the structure contains two N—H⋯O hydrogen bonds, and these were described in the original report as generating a polymer along b, but without further specification. However, examination of the published atomic coordinates shows clearly that the mol­ecules are linked into a chain of centrosymmetric, edge-fused rings running parallel to the [100] direction, in which R22(8) rings centred at (n, 1, 0) alternate with R42(12) rings centred at (n + [1\over2], 1, 0), where n represents an integer in each case (Fig. 5[link]).

[Figure 5]
Figure 5
Part of the crystal structure of (RS)-2-(2-chloro­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one showing the formation of a hydrogen-bonded chain of edge-fused rings along [100]. The published atomic coordinates (Li & Feng, 2009[Li, M.-J. & Feng, C.-J. (2009). Acta Cryst. E65, o2145.]) have been used. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

In 5-chloro-3-hy­droxy-2,2-dimethyl-2,3-di­hydro­quinazolin-4(1H)-one (Vembu et al., 2006[Vembu, N., Spencer, E. C., Lee, J., Kelly, J. G., Nolan, K. B. & Devocelle, M. (2006). Acta Cryst. E62, o5003-o5005.]), the heterocyclic ring again adopts the screw–boat conformation, and a combination of N—H⋯O and O—H⋯O hydrogen bonds links the mol­ecules into complex sheets, within which rings of S(5), R22(4) and R22(10) types can be identified. There is no carbonyl group in (RS)-2-methyl-4-phenyl-3,4-di­hydro­quinazoline, and here mol­ecules which are related by a 31 screw axis are linked by an N-H⋯N hydrogen bond to form a C(5) chain (Valkonen et al., 2011[Valkonen, A., Kolehmainen, E., Zakrzewska, A., Skotnicka, A. & Gawinecki, R. (2011). Acta Cryst. E67, o923-o924.]).

Finally, we note the structures of a number of 2,3-di­hydro­quinazolin-4(1H)-ones in which there is a substituent at atom N3 (Butcher et al., 2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4025-o4026.]; Toze et al., 2018[Toze, F. A. A., Zaytsev, V. P., Chervyakova, L. V., Kvyatkovskaya, E. A., Dorovatovskii, P. V. & Khrustalev, V. N. (2018). Acta Cryst. E74, 10-14.]; Zaytsev et al., 2018[Zaytsev, V. P., Sorokina, E. A., Kvyatkovskaya, E. A., Toze, F. A. A., Mhaldar, S. N., Dorovatovskii, P. V. & Khrustalev, V. N. (2018). Acta Cryst. E74, 1101-1106.]). In each of these examples, the mol­ecules are linked by a single N—H⋯O hydrogen bond to form a C(6) chain. However, when the substituent at atom N3 is an aryl­methyl­amino group, the heterocyclic ring adopts a screw–boat conformation (Butcher et al., 2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4025-o4026.]), but in five examples where this substituent is either a benzyl group or a furan­ylmethyl unit, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line (Toze et al., 2018[Toze, F. A. A., Zaytsev, V. P., Chervyakova, L. V., Kvyatkovskaya, E. A., Dorovatovskii, P. V. & Khrustalev, V. N. (2018). Acta Cryst. E74, 10-14.]; Zaytsev et al. 2018[Zaytsev, V. P., Sorokina, E. A., Kvyatkovskaya, E. A., Toze, F. A. A., Mhaldar, S. N., Dorovatovskii, P. V. & Khrustalev, V. N. (2018). Acta Cryst. E74, 1101-1106.]).

5. Synthesis and crystallization

A sample of compound (I)[link] was prepared using a recently published general procedure (Narasimhamurthy et al., 2014[Narasimhamurthy, K. H., Chandrappa, S., Sharath Kumar, K. S., Harsha, K. B., Ananda, H. & Rangappa, K. S. (2014). RSC Adv. 4, 34479-34486.]). Potassium tert-butoxide (3.3 mmol) was added to a suspension of 2-(di­bromo­meth­yl)-1,4-di­meth­oxy­benzene (3.3 mmol) and 2-amino-4-chloro­benzamide (3.5 mmol) in a pyridine-di­methyl­formamide mixture (3:1, v/v). The resulting mixture was heated at 313 K for 4 h, with TLC monitoring. When the reaction was judged to be complete, an excess of water was added, followed by extraction with ethyl acetate (2 × 20 ml). The combined organic extract was washed with brine and then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using silica gel mesh 60–120, with 30% ethyl acetate in hexane as eluent, to give the product (I)[link] in 79% yield. Crystals suitable for single crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of a solution in di­methyl­sulfoxide: m.p. 481–483 K.

6. Refinement

Crystal data, data collection and structure refinement details are given in Table 2[link]. In the setting of space group I41/a, No. 88, employed here the origin is located at a centre of inversion. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized position with C—H 0.93 Å (aromatic), 0.96 Å (CH3) or 0.98 Å (aliphatic C—H), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving the N—H distances shown in Table 1[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H15ClN2O3
Mr 318.75
Crystal system, space group Tetragonal, I41/a
Temperature (K) 296
a, c (Å) 15.314 (7), 25.736 (12)
V3) 6036 (6)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.26 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.913, 0.953
No. of measured, independent and observed [I > 2σ(I)] reflections 42994, 3149, 1848
Rint 0.072
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.04
No. of reflections 3149
No. of parameters 207
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(RS)-7-Chloro-2-(2,5-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one top
Crystal data top
C16H15ClN2O3Dx = 1.403 Mg m3
Mr = 318.75Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3465 reflections
a = 15.314 (7) Åθ = 1.6–27.6°
c = 25.736 (12) ŵ = 0.27 mm1
V = 6036 (6) Å3T = 296 K
Z = 16Block, colourless
F(000) = 26560.26 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3149 independent reflections
Radiation source: fine focus sealed tube1848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 0.3333 pixels mm-1θmax = 26.6°, θmin = 1.6°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1919
Tmin = 0.913, Tmax = 0.953l = 3226
42994 measured reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0505P)2 + 3.5139P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3149 reflectionsΔρmax = 0.17 e Å3
207 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30909 (14)0.40264 (14)0.37953 (7)0.0531 (6)
H10.3275 (17)0.4092 (16)0.4083 (10)0.064*
C20.30616 (16)0.31258 (15)0.36210 (8)0.0482 (6)
H20.36460.28790.36700.058*
N30.28752 (14)0.31121 (14)0.30684 (7)0.0506 (5)
H30.2932 (16)0.2628 (17)0.2929 (9)0.061*
C40.24435 (15)0.37295 (16)0.28060 (8)0.0467 (6)
O40.22338 (12)0.36121 (11)0.23471 (6)0.0603 (5)
C4A0.22505 (14)0.45429 (15)0.30792 (8)0.0434 (5)
C50.17657 (16)0.51985 (16)0.28452 (9)0.0521 (6)
H50.15660.51180.25070.062*
C60.15743 (16)0.59599 (17)0.30984 (9)0.0569 (7)
H60.12500.63970.29390.068*
C70.18794 (16)0.60558 (16)0.35987 (9)0.0556 (6)
Cl70.16054 (6)0.70075 (5)0.39245 (3)0.0873 (3)
C80.23775 (16)0.54326 (16)0.38428 (9)0.0522 (6)
H80.25830.55270.41780.063*
C8A0.25726 (14)0.46570 (15)0.35832 (8)0.0424 (5)
C210.24297 (15)0.25723 (14)0.39324 (8)0.0432 (5)
C220.26659 (17)0.23605 (16)0.44405 (8)0.0522 (6)
C230.2110 (2)0.18716 (17)0.47413 (9)0.0678 (8)
H230.22710.17350.50800.081*
C240.1321 (2)0.15794 (18)0.45543 (10)0.0682 (8)
H240.09510.12570.47670.082*
C250.10822 (18)0.17630 (16)0.40582 (9)0.0559 (7)
C260.16454 (16)0.22579 (15)0.37492 (8)0.0488 (6)
H260.14850.23790.34080.059*
O2210.34622 (12)0.26875 (12)0.45915 (6)0.0718 (6)
C2210.3739 (2)0.2493 (2)0.51083 (11)0.0918 (11)
H22A0.38230.18740.51430.138*
H22B0.33020.26840.53500.138*
H22C0.42790.27890.51790.138*
O2510.03307 (13)0.14750 (13)0.38268 (8)0.0767 (6)
C2510.0300 (2)0.1052 (2)0.41418 (14)0.0939 (11)
H25A0.04880.14420.44120.141*
H25B0.00480.05390.42940.141*
H25C0.07930.08890.39320.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0655 (14)0.0565 (13)0.0373 (10)0.0097 (11)0.0105 (10)0.0042 (10)
C20.0520 (14)0.0582 (15)0.0343 (12)0.0045 (12)0.0054 (10)0.0063 (10)
N30.0645 (14)0.0545 (13)0.0328 (10)0.0040 (11)0.0019 (9)0.0061 (9)
C40.0508 (14)0.0574 (15)0.0321 (11)0.0045 (12)0.0049 (10)0.0021 (11)
O40.0872 (13)0.0620 (11)0.0316 (8)0.0061 (9)0.0056 (8)0.0085 (7)
C4A0.0427 (13)0.0524 (14)0.0351 (11)0.0070 (11)0.0026 (10)0.0054 (10)
C50.0539 (15)0.0618 (16)0.0404 (12)0.0005 (13)0.0050 (11)0.0082 (11)
C60.0585 (16)0.0595 (17)0.0528 (14)0.0039 (13)0.0050 (12)0.0054 (12)
C70.0568 (16)0.0551 (16)0.0548 (14)0.0041 (13)0.0012 (12)0.0154 (12)
Cl70.1085 (7)0.0736 (5)0.0800 (5)0.0165 (4)0.0147 (4)0.0338 (4)
C80.0580 (16)0.0593 (16)0.0395 (12)0.0130 (13)0.0033 (11)0.0104 (11)
C8A0.0404 (13)0.0508 (14)0.0359 (11)0.0119 (11)0.0002 (10)0.0033 (10)
C210.0560 (15)0.0410 (13)0.0326 (11)0.0068 (11)0.0025 (10)0.0045 (9)
C220.0692 (17)0.0490 (15)0.0384 (12)0.0063 (13)0.0121 (12)0.0073 (11)
C230.109 (2)0.0588 (17)0.0354 (13)0.0081 (17)0.0032 (14)0.0095 (12)
C240.088 (2)0.0621 (18)0.0540 (16)0.0059 (16)0.0068 (15)0.0091 (13)
C250.0707 (18)0.0458 (14)0.0514 (14)0.0010 (13)0.0006 (13)0.0025 (11)
C260.0612 (16)0.0484 (14)0.0369 (11)0.0042 (12)0.0039 (11)0.0006 (10)
O2210.0866 (14)0.0768 (13)0.0521 (11)0.0029 (11)0.0292 (10)0.0026 (9)
C2210.124 (3)0.091 (2)0.0607 (17)0.024 (2)0.0496 (18)0.0082 (16)
O2510.0707 (13)0.0784 (14)0.0810 (13)0.0176 (11)0.0024 (11)0.0074 (11)
C2510.072 (2)0.082 (2)0.128 (3)0.0106 (17)0.012 (2)0.026 (2)
Geometric parameters (Å, º) top
N1—C8A1.364 (3)C21—C261.377 (3)
N1—C21.451 (3)C21—C221.395 (3)
N1—H10.80 (3)C22—C231.373 (4)
C2—N31.451 (3)C22—O2211.374 (3)
C2—C211.516 (3)C23—C241.376 (4)
C2—H20.9800C23—H230.9300
N3—C41.337 (3)C24—C251.357 (3)
N3—H30.83 (2)C24—H240.9300
C4—O41.237 (3)C25—O2511.369 (3)
C4—C4A1.461 (3)C25—C261.397 (3)
C4A—C51.386 (3)C26—H260.9300
C4A—C8A1.399 (3)O221—C2211.427 (3)
C5—C61.368 (3)C221—H22A0.9600
C5—H50.9300C221—H22B0.9600
C6—C71.377 (3)C221—H22C0.9600
C6—H60.9300O251—C2511.418 (3)
C7—C81.374 (3)C251—H25A0.9600
C7—Cl71.733 (3)C251—H25B0.9600
C8—C8A1.395 (3)C251—H25C0.9600
C8—H80.9300
C8A—N1—C2122.09 (19)C26—C21—C22117.8 (2)
C8A—N1—H1119.2 (19)C26—C21—C2124.84 (19)
C2—N1—H1114.6 (19)C22—C21—C2117.4 (2)
N3—C2—N1108.84 (19)C23—C22—O221126.1 (2)
N3—C2—C21112.62 (19)C23—C22—C21119.6 (2)
N1—C2—C21112.82 (18)O221—C22—C21114.2 (2)
N3—C2—H2107.4C22—C23—C24121.7 (2)
N1—C2—H2107.4C22—C23—H23119.2
C21—C2—H2107.4C24—C23—H23119.2
C4—N3—C2125.6 (2)C25—C24—C23119.9 (3)
C4—N3—H3117.8 (17)C25—C24—H24120.1
C2—N3—H3114.6 (17)C23—C24—H24120.1
O4—C4—N3120.5 (2)C24—C25—O251124.7 (2)
O4—C4—C4A122.1 (2)C24—C25—C26118.8 (3)
N3—C4—C4A117.39 (19)O251—C25—C26116.5 (2)
C5—C4A—C8A120.1 (2)C21—C26—C25122.2 (2)
C5—C4A—C4121.12 (19)C21—C26—H26118.9
C8A—C4A—C4118.8 (2)C25—C26—H26118.9
C6—C5—C4A121.7 (2)C22—O221—C221116.8 (2)
C6—C5—H5119.2O221—C221—H22A109.5
C4A—C5—H5119.2O221—C221—H22B109.5
C5—C6—C7117.6 (2)H22A—C221—H22B109.5
C5—C6—H6121.2O221—C221—H22C109.5
C7—C6—H6121.2H22A—C221—H22C109.5
C8—C7—C6122.8 (2)H22B—C221—H22C109.5
C8—C7—Cl7119.83 (19)C25—O251—C251118.1 (2)
C6—C7—Cl7117.4 (2)O251—C251—H25A109.5
C7—C8—C8A119.4 (2)O251—C251—H25B109.5
C7—C8—H8120.3H25A—C251—H25B109.5
C8A—C8—H8120.3O251—C251—H25C109.5
N1—C8A—C8122.4 (2)H25A—C251—H25C109.5
N1—C8A—C4A119.2 (2)H25B—C251—H25C109.5
C8—C8A—C4A118.4 (2)
C8A—N1—C2—N333.6 (3)C5—C4A—C8A—C81.3 (3)
C8A—N1—C2—C2192.2 (2)C4—C4A—C8A—C8179.4 (2)
N1—C2—N3—C426.5 (3)N3—C2—C21—C2614.9 (3)
C21—C2—N3—C499.4 (3)N1—C2—C21—C26108.8 (2)
C2—N3—C4—O4171.9 (2)N3—C2—C21—C22164.5 (2)
C2—N3—C4—C4A9.3 (3)N1—C2—C21—C2271.8 (3)
O4—C4—C4A—C54.7 (3)C26—C21—C22—C231.5 (3)
N3—C4—C4A—C5176.6 (2)C2—C21—C22—C23179.0 (2)
O4—C4—C4A—C8A174.6 (2)C26—C21—C22—O221179.1 (2)
N3—C4—C4A—C8A4.1 (3)C2—C21—C22—O2210.4 (3)
C8A—C4A—C5—C61.3 (4)O221—C22—C23—C24179.5 (2)
C4—C4A—C5—C6179.4 (2)C21—C22—C23—C240.2 (4)
C4A—C5—C6—C70.1 (4)C22—C23—C24—C251.0 (4)
C5—C6—C7—C81.5 (4)C23—C24—C25—O251177.2 (2)
C5—C6—C7—Cl7178.02 (19)C23—C24—C25—C260.8 (4)
C6—C7—C8—C8A1.5 (4)C22—C21—C26—C251.8 (3)
Cl7—C7—C8—C8A178.07 (18)C2—C21—C26—C25178.8 (2)
C2—N1—C8A—C8158.6 (2)C24—C25—C26—C210.6 (4)
C2—N1—C8A—C4A24.0 (3)O251—C25—C26—C21178.8 (2)
C7—C8—C8A—N1177.4 (2)C23—C22—O221—C2210.6 (4)
C7—C8—C8A—C4A0.0 (3)C21—C22—O221—C221179.9 (2)
C5—C4A—C8A—N1176.2 (2)C24—C25—O251—C2518.7 (4)
C4—C4A—C8A—N13.1 (3)C26—C25—O251—C251173.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.80 (3)2.39 (3)3.161 (3)162 (2)
N3—H3···O4ii0.83 (3)2.04 (3)2.854 (3)166 (2)
Symmetry codes: (i) y+3/4, x+1/4, z+1/4; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

KHN is grateful to UGC, RFSMS, Government of India for a Research Fellowship. BKS thanks the University of Mysore, for research facilities.

Funding information

KSR and HSY are grateful to UGC, New Delhi, for the award of a BSR Faculty Fellowship for a period of three years.

References

First citationBadolato, M., Aiello, F. & Neamati, N. (2018). RSC Adv. 8, 20894–20921.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4025–o4026.  CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, M.-J. & Feng, C.-J. (2009). Acta Cryst. E65, o2145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarasimhamurthy, K. H., Chandrappa, S., Sharath Kumar, K. S., Harsha, K. B., Ananda, H. & Rangappa, K. S. (2014). RSC Adv. 4, 34479–34486.  CrossRef CAS Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToze, F. A. A., Zaytsev, V. P., Chervyakova, L. V., Kvyatkovskaya, E. A., Dorovatovskii, P. V. & Khrustalev, V. N. (2018). Acta Cryst. E74, 10–14.  CSD CrossRef IUCr Journals Google Scholar
First citationValkonen, A., Kolehmainen, E., Zakrzewska, A., Skotnicka, A. & Gawinecki, R. (2011). Acta Cryst. E67, o923–o924.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVembu, N., Spencer, E. C., Lee, J., Kelly, J. G., Nolan, K. B. & Devocelle, M. (2006). Acta Cryst. E62, o5003–o5005.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaytsev, V. P., Sorokina, E. A., Kvyatkovskaya, E. A., Toze, F. A. A., Mhaldar, S. N., Dorovatovskii, P. V. & Khrustalev, V. N. (2018). Acta Cryst. E74, 1101–1106.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds