research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of binary compounds of meldonium 3-(1,1,1-tri­methyl­hydrazin-1-ium-2-yl)prop­ano­ate with sodium bromide and sodium iodide

CROSSMARK_Color_square_no_text.svg

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by M. Zeller, Purdue University, USA (Received 30 April 2018; accepted 7 May 2018; online 22 May 2018)

3-(1,1,1-Tri­methyl­hydrazin-1-ium-2-yl)propano­ate (C6H14N2O2, M, more commonly known under its commercial names Meldonium or Mildronate) co-crystalizes with sodium bromide and sodium iodide forming polymeric hydrates poly[[tetra-μ-aqua-di­aqua­bis­[3-(1,1,1-tri­methyl­hydrazin-1-ium-2-yl)propano­ate]disodium] dibromide tetra­hydrate], [Na2(C6H14N2O2)2(H2O)6]Br2·4H2O, and poly[[di-μ-aqua-di­aqua­[μ-3-(1,1,1-tri­methyl­hydrazin-1-ium-2-yl)propano­ate]disodium] diiodide], [Na2(C6H14N2O2)2(H2O)4]I2. The coordination numbers of the sodium ions are 6; the coordination polyhedra can be described as distorted octa­hedra. Metal ions and M zwitterions are assembled into infinite layers via electrostatic inter­actions and hydrogen-bonded networks. These layers are connected via electrostatic attraction between halogenide ions and positive tri­methyl­hydrazinium groups into a three-dimensional structure.

1. Chemical context

3-(1,1,1-Tri­methyl­hydrazin-1-ium-2-yl)propano­ate (M), more commonly known under its commercial names such as Meldonium or Mildronate, was introduced by Grindeks (Latvia) as an anti-ischemic medication (Liepinsh et al., 2017[Liepinsh, E., Makarova, E., Sevostjanovs, E., Hartmane, D., Cirule, H., Zharkova-Malkova, O., Grinberga, S. & Dambrova, M. (2017). Basic & Clinical Pharmacology & Toxicology 120, 450-456.]). The synthesis of M was originally described by Giller et al. (1975[Giller, S. A., Eremeev, A. V., Kalvin'sh, I. Y., Liepin'sh, É. É., & Semenikhina, V. G. (1975). Chem. Heterocycl. Compd. 11, 1378-1382.]) and was improved in a number of patents and papers (Kalvins & Stonans, 2009[Kalvins, I. & Stonans, I. (2009). WO Patent, WO/2009/071586.]; Kalvins et al., 2014[Kalvins, I., Liepins, E., Loza, E., Dambrova, M., Stonans, L., Lola, D., Kuka, J., Pugovics, O., Vilskersts, R. & Grinberga, S. (2014). US Patent, US 20140088125 A1.]; Silva, 2013[Silva, J. (2013). Patent CA 2661357 C, 2013.]). Recently M achieved controversial publicity as a doping agent. As a result of its inclusion in the World Anti-Doping Agency List of Prohibited Substances, it attracted the attention of pharmaceutical and forensic chemists (Görgens et al., 2015[Görgens, C., Guddat, S., Dib, J., Geyer, H., Schänzer, W. & Thevis, M. (2015). Drug Test. Anal. 7, 973-979.]).

Binary compounds of M with various inorganic salts have been described in numerous M-related synthetic procedures (see above); their high stability was a challenge that was necessary to overcome for the preparation of pharmaceutically pure forms of M. The stability of a sodium iodide binary compound was given as an example in Silva (2013[Silva, J. (2013). Patent CA 2661357 C, 2013.]). The crystal structures of two such binary compounds, with sodium bromide (I)[link] and with sodium iodide (II)[link], are presented here.

2. Structural commentary

The labelling schemes for structures (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link]. Mol­ecules of (I)[link], which crystallize in an acentric space group, have a non-crystallographic inversion centre at 0.6238 (6) 0.744 (5) 0.5001 (2). This symmetry is visible in Fig. 1[link]; it is also demonstrated by overlay of the two chemically equivalent moieties, after inversion of one of them (Fig. 3[link]). Both Na ions have distorted octa­hedral environments (coordination number 6). The coordination sphere contains an anionic oxygen atom of a monodentate carb­oxy­lic group, two pairs of bridging O atoms of water mol­ecules (O5, O8, O9 and O10), and a terminal water mol­ecule (atoms O6 and O7 for Na1 and Na2 respectively). The shortest Na—O separations (Table 1[link]) correspond to the anionic oxygens O1 and O3; the longest are opposite to the bridging atoms O5 and O8 (not shown in Fig. 1[link], but visible in Fig. 6[link]).

[Scheme 1]

Table 1
Selected bond lengths (Å) for (I)[link]

Na1—O1 2.367 (4) Na2—O8 2.364 (3)
Na1—O5 2.368 (3) Na2—O9 2.361 (3)
Na1—O6 2.369 (3) Na2—O10 2.449 (4)
Na1—O8i 2.517 (4) O1—C1 1.241 (5)
Na1—O9 2.442 (4) O2—C1 1.281 (5)
Na1—O10 2.361 (4) O3—C7 1.249 (5)
Na2—O3 2.359 (4) O4—C7 1.282 (5)
Na2—O5ii 2.543 (4) N1—N2 1.471 (6)
Na2—O7 2.368 (3) N3—N4 1.466 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.
[Figure 1]
Figure 1
Labelling scheme of the asymmetric unit of compound (I)[link] with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Labelling scheme of the asymmetric unit of compound (II)[link] with 50% probability displacement ellipsoids.
[Figure 3]
Figure 3
Overlay of the two organic fragments in (I)[link] after inversion. The average deviation is 0.04 Å.
[Figure 6]
Figure 6
The infinite chain of hydrated sodium ions along the [010] axis in (I)[link].

The coordination polyhedra of the sodium ions in (II)[link] are visibly different (Fig. 4[link], Table 2[link]). Both have a distorted octa­hedral geometry and coordination number 6. The coordination polyhedron of Na1 contains an anionic oxygen atom O1 of a monodentate carb­oxy­lic group, atoms O3 and O4 of the bidentate carb­oxy­lic acid group, and three water mol­ecules O5, O6, and O8. The O8 atom, which forms three bridging contacts to three different sodium ions, shows a much longer separation from Na1 than any of the other coordinated oxygen atoms (Table 2[link]).

Table 2
Selected bond lengths (Å) for (II)[link]

Na1—O1 2.462 (3) Na2—O7 2.372 (3)
Na1—O3 2.374 (3) Na2—O8iii 2.569 (4)
Na1—O4 2.552 (3) Na2—O8 2.510 (3)
Na1—O5 2.351 (3) O1—C1 1.274 (4)
Na1—O6 2.385 (4) O2—C1 1.247 (4)
Na1—O8i 2.857 (4) O3—C7 1.256 (5)
Na2—O3 2.315 (3) O4—C7 1.264 (5)
Na2—O4ii 2.431 (3) N1—N2 1.478 (4)
Na2—O5ii 2.373 (3) N3—N4 1.476 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
Coordination polyhedra of the sodium ions in (II)[link].

The octa­hedral environment around Na2 in (II)[link] (Fig. 4[link], Table 2[link]) is less distorted: it consists of two bridging oxygen atoms O3 and O4 of two distinct carboxyl­ate groups and four water oxygen atoms. The shortest distance is Na2—O3 (involving carboxyl­ate group oxygens); the two longest again belong to the bridging O8 atoms (Table 2[link]).

All zwitterions of M have approximately the same geometry (the two pseudo-inversion-symmetric zwitterions in the structure of (I)[link] are nearly superimposable, Fig. 3[link]). Both monodentate carboxyl­ates in (I)[link] and that in (II)[link] have slightly elongated C—O bonds for the oxygen atom bound to the corresponding Na ion (Tables 1[link] and 2[link]). These bonds are slightly longer than the corresponding bonds in M monohydrate and dihydrate [1.258 (2) and 1.2618 (9) Å, respectively; CCDC entries CCDC 1822460 and 1822463; Naza­renko, 2018[Nazarenko, A. Y. (2018). Private communication (refcodes CCDC 1822460-1822463. CCDC, Cambridge, England. ]). This relatively small change could be inter­preted as a shift of of the anionic charge towards the sodium-bound oxygen atom. The carbon–oxygen bond lengths within the bidenate carboxyl­ate groups in (II)[link] are essentially identical within two standard deviations.

All N—N bond distances are around 1.47 Å (Tables 1[link] and 2[link]) and are within experimental error indistinguishable from the average value [1.468 (2) Å] for known low-temperature single-crystal structures of M (CCDC 1822460–1822463; Naza­renko, 2018[Nazarenko, A. Y. (2018). Private communication (refcodes CCDC 1822460-1822463. CCDC, Cambridge, England. ]), but significantly shorter than the value reported for room temperature (1.49 Å; Kemme et al., 1983[Kemme, A., Bleidelis, J., Kalvinsh, I. & Eremeev, A. (1983). Latv. PSR Zinat. Akad. Vestis, 2, 215-218.]).

The distribution of the Hirshfeld surface electrostatic potential of the zwitterion (Fig. 5[link]) shows that only a small area around the carboxyl oxygen atoms is negatively charged: the remaining Hirshfeld surface has positive electrostatic potential. This makes this area attractive for anions, with the N—H group of the hydrazine fragment available as a donor of an electrostatically enhanced hydrogen bond. The lone-pair density of the same hydrazine nitro­gen atom is not sufficient to overcome the total positive charge of the tri­methyl­hydrazinium fragment and does not act as a hydrogen-bond acceptor.

[Figure 5]
Figure 5
Hirshfeld surface of the zwitterion with electrostatic potential plotted using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). Red – negative, blue – positive.

3. Supra­molecular features

In the structure of (I)[link], the coordination polyhedra of the sodium ions are connected by common edges (a pair of bridging water mol­ecules, O5 and O8, and O9 and O10), forming an infinite chain of ions along the [010] vector (Fig. 6[link]). In addition to Na⋯O inter­actions, this chain is supported by six hydrogen bonds (Table 3[link]): O6—H6B⋯O2, O5—H5A⋯O1, O8—H8B⋯O3, O7—H7B⋯O4, O9—H9A⋯O6 and O10—H10B⋯O7. The first four of them, connecting the anionic oxygen atoms of the carb­oxy­lic groups, are electrostatically enhanced.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.97 (6) 1.79 (6) 2.746 (4) 172 (6)
O5—H5B⋯O11iii 0.82 (6) 2.02 (6) 2.819 (5) 167 (6)
O6—H6A⋯O4iv 0.80 (3) 2.06 (3) 2.845 (5) 165 (6)
O6—H6B⋯O2i 0.82 (3) 1.91 (3) 2.732 (4) 175 (6)
O7—H7A⋯O2v 0.82 (3) 2.05 (3) 2.856 (5) 165 (6)
O7—H7B⋯O4ii 0.80 (3) 1.94 (3) 2.731 (4) 169 (6)
O8—H8A⋯O13ii 0.81 (3) 2.06 (3) 2.815 (5) 155 (5)
O8—H8B⋯O3ii 0.81 (3) 1.95 (3) 2.754 (4) 168 (7)
O9—H9A⋯O6ii 0.93 (6) 1.96 (6) 2.852 (4) 160 (5)
O9—H9B⋯O13 0.79 (6) 2.01 (6) 2.772 (5) 160 (6)
O10—H10A⋯O11v 0.78 (6) 2.00 (6) 2.771 (5) 167 (6)
O10—H10B⋯O7i 0.90 (6) 1.99 (6) 2.853 (4) 158 (5)
O11—H11D⋯O12 0.80 (3) 1.94 (3) 2.744 (6) 179 (7)
O11—H11E⋯O2 0.80 (3) 1.92 (3) 2.719 (5) 174 (9)
O13—H13A⋯O14 0.80 (3) 1.95 (3) 2.733 (6) 170 (6)
O13—H13B⋯O4iv 0.80 (3) 1.94 (3) 2.727 (5) 168 (9)
N1—H1⋯Br1i 0.83 (5) 2.57 (5) 3.379 (5) 167 (5)
N3—H3⋯Br2v 0.84 (5) 2.57 (5) 3.394 (5) 169 (5)
O12—H12D⋯Br1i 0.80 (5) 2.52 (6) 3.316 (4) 172 (6)
O12—H12E⋯Br1 0.80 (5) 2.49 (6) 3.289 (4) 177 (8)
O14—H14A⋯Br2i 0.87 (7) 2.47 (7) 3.323 (5) 168 (7)
O14—H14B⋯Br2 0.87 (6) 2.41 (6) 3.281 (5) 175 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, -y+2, z]; (iv) [x+{\script{1\over 2}}, -y+2, z]; (v) [x-{\script{1\over 2}}, -y+1, z].

Each bromide ion forms a hydrogen bond with a hydrazine N—H group. In addition, each of them forms two hydrogen bonds with neighboring water mol­ecules (O12 and O14), thus forming two more infinite chains in the [010] direction. Water mol­ecules O11 and O13 form bridges between the cation chain and the `bromide' chains as hydrogen-bond donors; they are also acceptors of four hydrogen bonds from the water mol­ecules O5 and O10, and O8 and O9 respectively. These hydrogen bonds connect chains into a two-dimensional network. Two more enhanced hydrogen bonds (Table 3[link]), O7—H7A⋯O2 and O6—H6A⋯O4, also connect neighboring chains. The resulting network forms a layer in the (001) plane with the bromide ions and tri­methyl­ammonium groups forming each side (Fig. 7[link]). These layers are bound together via electrostatic inter­action of the corresponding positive and negative ions; no short intra­layer contacts are visible.

[Figure 7]
Figure 7
Packing of (I)[link]. View along the [010] axis. Sodium ions are green.

In the structure of (II)[link], the coordination polyhedra of the sodium ions are bridged via the bidentate carboxyl­ate group to form an infinite chain along the [001] axis (Fig. 8[link]). The water mol­ecule O5 provides an additional bridge, stabilizing the chain. These chains are inter­connected in the (100) plane with the help of weaker (and longer by almost 0.5 Å) Na⋯O8 contacts (Fig. 9[link]). An array of hydrogen bonds (Table 4[link], Fig. 9[link]) additionally stabilizes the resulting layer. As in compound (I)[link], both iodide ions are connected to zwitterions M via N—H⋯I hydrogen bonds. In addition, ion I1 is an acceptor of two hydrogen bonds with water mol­ecules (O6—H6A⋯I1 and O7—H7A⋯I1, see Table 4[link]). In absence of neighboring water mol­ecules, two CH groups of the tri­methyl­ammonium fragment form close contacts with the ion I2. As in structure (I)[link], the layers are tied together by the electrostatic inter­action of the corresponding positive and negative ions; no short intra­layer contacts are visible (Fig. 10[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O1i 0.85 (6) 1.89 (6) 2.741 (4) 175 (6)
O7—H7B⋯O2iv 0.91 1.73 2.629 (4) 169
O8—H8A⋯O1ii 0.85 (6) 2.05 (6) 2.815 (4) 149 (6)
N1—H1⋯I2 0.82 (6) 2.87 (6) 3.688 (4) 177 (5)
N3—H3⋯I1v 0.92 (6) 2.76 (6) 3.650 (3) 161 (5)
O5—H5A⋯O7v 0.86 (6) 2.00 (6) 2.846 (4) 172 (4)
O6—H6A⋯I1 0.89 2.64 3.518 (3) 166
O6—H6B⋯O4vi 0.89 1.95 2.825 (4) 168
O7—H7A⋯I1iii 0.91 2.78 3.548 (3) 143
O8—H8B⋯O6iii 0.86 (7) 2.13 (7) 2.989 (5) 175 (5)
C3—H3A⋯I1ii 0.99 3.01 3.920 (4) 154
C11—H11B⋯I2vii 0.98 3.02 3.975 (4) 165
C12—H12C⋯I1vi 0.98 2.99 3.952 (5) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y+1, -z+2; (vii) -x+1, -y, -z+2.
[Figure 8]
Figure 8
The infinite chain of hydrated sodium ions along the [001] axis in (II)[link].
[Figure 9]
Figure 9
Chains in the structure of (II)[link] are connected via atom O8 (in green) and a network of hydrogen bonds (dashed lines).
[Figure 10]
Figure 10
Packing of (II)[link]. View along the [001] axis. Sodium ions are green.

4. Database survey

Prior to 2018, the only meldonium-related single-crystal structure in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.], CSD Version 5.39) had been a crystal structure of the dihydrate form (refcode CABVOQ; Kemme et al., 1983[Kemme, A., Bleidelis, J., Kalvinsh, I. & Eremeev, A. (1983). Latv. PSR Zinat. Akad. Vestis, 2, 215-218.])) measured at room temperature with no experimental positions for hydrogen atoms. Hydrates of M also were also studied using powder X-ray diffraction (Zvirgzdiņš et al., 2011[Zvirgzdiņš, A., Veldre, K. & Actiņš, A. (2011). Latvian J. Chem. 50, 64-72.]; Bērziņš & Actiņš, 2014[Bērziņš, A. & Actiņš, A. (2014). CrystEngComm, 16, 3926-3934.]). Meldonium is closely related to betaines, a wide class of zwitterionic compounds with an onium atom that bears no hydrogen atoms and that is not adjacent to the anionic atom. The parent compound of the betaine class, N,N,N-tri­methyl­glycine (TMG), has a very rich crystal chemistry: the CSD (Version 5.39) contains 217 different structures of its compounds. There are several known crystal structures of TMG binary compounds with potassium iodide (HIPQIG; Andrade et al., 1999[Andrade, L. C. R., Costa, M. M. R., Paixao, J., Agostinho Moreira, J., Almeida, A., Chaves, M. R. & Klopperpieper, A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 83-84.]), rubidium iodide (NEMKIZ; Andrade et al., 2001[Andrade, L. C. R., Costa, M. M. R., Pinto, F., Rodrigues, V. H., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 227-228.]), potassium bromide (WIQPUH01; Andrade et al., 2000[Andrade, L. C. R., Costa, M. M. R., Pinto, F., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 537-538.]) and sodium bromide (JAZNEE; Rodrigues et al., 2005[Rodrigues, V. H., Costa, M. M. R., Klopperpieper, A., Chaves, M. R., Almeida, A. & Agostinho Moreira, J. (2005). Z. Kristallogr. New Cryst. Struct. 220, 363-364.]). These compounds show features similar to those of their meldonium analogs: infinite chains of hydrated alkali metal cations and layers of tri­methyl­ammonium groups. The obvious differences are the absence of N—H⋯X hydrogen bonds and the much smaller size of the organic domain.

5. Synthesis and crystallization

Preparation and properties of binary compounds of M with sodium halogenides are described in detail in Giller et al. (1975[Giller, S. A., Eremeev, A. V., Kalvin'sh, I. Y., Liepin'sh, É. É., & Semenikhina, V. G. (1975). Chem. Heterocycl. Compd. 11, 1378-1382.]) and Silva (2013[Silva, J. (2013). Patent CA 2661357 C, 2013.]). Commercial M dihydrate was received from Grindeks (Latvia) and recrystallized from propanol-2. Equimolar amounts of it were mixed with sodium iodide and sodium bromide in aqueous ethanol; subsequent slow evaporation yielded crystals suitable for single–crystal X-ray experiments. IR spectra (FTIR–ATR, cm−1) are very similar to those of M dihydrate. (I)[link]: 3399 (H2O), 1571, 1483, 1402, 1320; (II)[link]: 3350, 3180 (H2O), 1568, 1480, 1405, 1317, 1088, 816; M dihydrate: 3201 (H2O), 1577, 1484, 1404, 1320, 1090, 816.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link].

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Na2(C6H14N2O2)2(H2O)6]Br2·4H2O [Na2(C6H14N2O2)2(H2O)4]·I2
Mr 678.34 664.23
Crystal system, space group Orthorhombic, Pca21 Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 16.5181 (8), 5.5262 (3), 33.2605 (16) 19.7455 (11), 11.4530 (7), 10.9733 (7)
α, β, γ (°) 90, 90, 90 90, 92.382 (2), 90
V3) 3036.1 (3) 2479.4 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.76 2.61
Crystal size (mm) 0.65 × 0.13 × 0.09 0.3 × 0.2 × 0.07
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS Bruker PHOTON-100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (TWINABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.217, 0.635 0.301, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 117729, 6969, 6121 5475, 5475, 5012
Rint 0.044 0.048
(sin θ/λ)max−1) 0.650 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.03 0.026, 0.057, 1.17
No. of reflections 6969 5475
No. of parameters 380 286
No. of restraints 33 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.71, −0.38 0.70, −0.55
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.250 (10)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]).

Structure (I)[link] was was solved and refined in an achiral space group; the large Flack parameter prompted twin refinement as a two-component inversion twin [0.75 (1):0.25 (1)] with twin matrix [[\overline{1}] 0 0, 0 [\overline{1}] 0, 0 0 [\overline{1}]]. Reflections in (II)[link] were processed as a two-domain [0.668 (1):0.332 (1) ratio] non-merohedral twin with twin matrix [1.000 0.000 0.000, 0.000 −1.000 0.000, −0.146 0.000 −1.000]; domain 2 is rotated from the first domain by 180.0° about the reciprocal axis 1.000 −0.001 −0.073 or the real axis 1.000 0.000 0.002 (CELL_NOW; Sheldrick, 2008[Sheldrick, G. M. (2008). CELL_NOW. Version 2008/4. University of Göttingen, Germany.]).

In the structure of (I)[link] distances O6—H6A, O6—H6B, O7—H7A, O7—H7B, O8—H8A, and O8—H8B; O11—H11D, O11—H11E, O12—H12E, O12—H12D, O13—H13A, and O13—H13B; O14—H14A and O14—H14B were restrained to be equal with an effective standard deviation of 0.02 Å. Distances N1—H1 and N3—H3 were also restrained to be equal with an effective standard deviation of 0.02 Å; Uiso(H) = 1.5Uiso(N).

In the structure of (II)[link], water mol­ecules O6 and O7 were refined as rotating groups (AFIX 7). The positions and isotropic displacement parameters of the hydrazinium hydrogen atoms were refined.

In both structures, methyl­ene hydrogen atoms were refined with riding coordinates and with Uiso(H) = 1.2 Uiso(C); methyl hydrogen atoms were refined as rotating idealized methyl groups and with Uiso(H) = 1.5Uiso(C). Hydrogen atoms of water mol­ecules were refined in an isotropic approximation with Uiso(H) = 1.5Uiso(O).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I); SHELXT2016 (Sheldrick, 2015a) for (II). Program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) for (I); SHELXL (Sheldrick, 2015b) for (II). Molecular graphics: OLEX2 (Dolomanov et al., 2009) and CrystalExplorer17 (Turner et al., 2017) for (I); OLEX2 (Dolomanov et al., 2009) for (II). For both structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I) top
Crystal data top
[Na2(C6H14N2O2)2(H2O)6]Br2·4H2ODx = 1.484 Mg m3
Mr = 678.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9077 reflections
a = 16.5181 (8) Åθ = 3.1–27.4°
b = 5.5262 (3) ŵ = 2.76 mm1
c = 33.2605 (16) ÅT = 173 K
V = 3036.1 (3) Å3Needle, colourless
Z = 40.65 × 0.13 × 0.09 mm
F(000) = 1408
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
6121 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.044
φ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 2121
Tmin = 0.217, Tmax = 0.635k = 77
117729 measured reflectionsl = 4343
6969 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0417P)2 + 2.0085P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.71 e Å3
6969 reflectionsΔρmin = 0.38 e Å3
380 parametersAbsolute structure: Refined as an inversion twin
33 restraintsAbsolute structure parameter: 0.250 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.92047 (3)0.03168 (8)0.28604 (2)0.03549 (13)
Br20.82608 (3)0.44931 (9)0.71406 (2)0.04007 (14)
Na10.67706 (11)0.9937 (3)0.48342 (7)0.0182 (5)
Na20.57098 (11)0.4989 (3)0.51722 (7)0.0186 (5)
O10.73577 (16)0.7342 (5)0.43488 (9)0.0229 (6)
O20.8552 (2)0.5504 (5)0.44213 (11)0.0240 (7)
O30.51258 (17)0.7566 (5)0.56578 (9)0.0243 (6)
O40.39361 (19)0.9443 (5)0.55827 (11)0.0226 (6)
O50.63384 (19)1.3548 (5)0.45166 (9)0.0237 (6)
H5A0.671 (4)1.481 (10)0.444 (2)0.036*
H5B0.594 (3)1.388 (11)0.4385 (17)0.036*
O60.78937 (18)1.2455 (5)0.49791 (10)0.0249 (6)
H6A0.825 (2)1.210 (10)0.5134 (14)0.037*
H6B0.809 (3)1.330 (9)0.4802 (14)0.037*
O70.45879 (18)0.2480 (5)0.50216 (10)0.0255 (6)
H7A0.423 (3)0.308 (9)0.4882 (15)0.038*
H7B0.435 (3)0.173 (10)0.5193 (14)0.038*
O80.61447 (17)0.1366 (5)0.54820 (9)0.0222 (6)
H8A0.651 (2)0.124 (10)0.5642 (13)0.033*
H8B0.584 (3)0.022 (7)0.550 (2)0.033*
O90.70252 (18)0.6523 (5)0.52830 (10)0.0240 (6)
H9A0.729 (3)0.506 (10)0.5247 (19)0.036*
H9B0.717 (3)0.707 (10)0.5492 (19)0.036*
O100.54562 (19)0.8403 (5)0.47200 (10)0.0241 (6)
H10A0.530 (3)0.776 (10)0.4526 (18)0.036*
H10B0.507 (4)0.945 (10)0.480 (2)0.036*
N10.7581 (3)0.9463 (7)0.34771 (14)0.0243 (9)
H10.792 (3)0.949 (10)0.3293 (16)0.037*
N20.6865 (3)1.0657 (6)0.33042 (12)0.0308 (9)
N30.4899 (3)0.5316 (7)0.65254 (15)0.0254 (9)
H30.454 (3)0.544 (10)0.6701 (16)0.038*
N40.5581 (3)0.3991 (7)0.67014 (13)0.0398 (10)
C10.8094 (2)0.7177 (7)0.42815 (12)0.0180 (8)
C20.8516 (3)0.9122 (8)0.40294 (14)0.0266 (9)
H2A0.8869641.0092900.4207720.032*
H2B0.8867010.8317690.3828450.032*
C30.7943 (3)1.0812 (7)0.38121 (13)0.0240 (9)
H3A0.7514921.1381480.3997900.029*
H3B0.8240431.2238130.3709380.029*
C40.6963 (4)1.3329 (8)0.32444 (18)0.0457 (14)
H4A0.6972531.4138260.3506570.069*
H4B0.6508881.3948860.3085270.069*
H4C0.7471821.3647070.3102390.069*
C50.6719 (4)0.9498 (8)0.2904 (2)0.0416 (14)
H5C0.7190710.9756290.2730100.062*
H5D0.6239501.0222980.2778420.062*
H5E0.6630800.7758440.2939870.062*
C60.6167 (4)1.0165 (10)0.3575 (2)0.0382 (14)
H6C0.6076110.8415790.3592570.057*
H6D0.5680501.0950720.3468020.057*
H6E0.6283441.0806300.3843870.057*
C70.4383 (2)0.7743 (7)0.57220 (12)0.0190 (8)
C80.3960 (3)0.5814 (8)0.59707 (14)0.0270 (9)
H8C0.3619030.6628410.6174760.032*
H8D0.3594650.4887360.5791890.032*
C90.4512 (3)0.4059 (7)0.61824 (13)0.0244 (9)
H9C0.4196980.2652650.6280360.029*
H9D0.4930990.3463290.5994090.029*
C100.5447 (5)0.1391 (10)0.6751 (2)0.073 (2)
H10C0.4954700.1127580.6910300.110*
H10D0.5910590.0670820.6890660.110*
H10E0.5383970.0633380.6486840.110*
C110.5722 (5)0.5108 (9)0.7105 (2)0.052 (2)
H11A0.5845740.6831110.7072690.078*
H11B0.6178550.4298480.7237370.078*
H11C0.5235040.4924990.7270740.078*
C120.6308 (5)0.4501 (13)0.6429 (3)0.0527 (18)
H12A0.6210700.3797780.6162690.079*
H12B0.6795590.3779580.6546250.079*
H12C0.6382910.6253530.6402920.079*
O111.0017 (2)0.4552 (7)0.40834 (13)0.0284 (8)
H11D0.999 (4)0.458 (11)0.3843 (8)0.043*
H11E0.957 (3)0.488 (11)0.417 (3)0.043*
O120.9948 (3)0.4654 (7)0.32594 (15)0.0441 (10)
H12D0.973 (4)0.586 (9)0.318 (2)0.066*
H12E0.975 (4)0.348 (9)0.316 (2)0.066*
O130.7469 (2)0.9506 (6)0.59158 (13)0.0272 (8)
H13A0.752 (4)0.933 (11)0.6152 (8)0.041*
H13B0.793 (2)0.976 (11)0.585 (3)0.041*
O140.7528 (3)0.9447 (8)0.67369 (14)0.0489 (11)
H14A0.777 (5)1.077 (10)0.681 (3)0.073*
H14B0.771 (4)0.817 (10)0.686 (2)0.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0441 (3)0.0355 (2)0.0268 (3)0.0014 (2)0.0046 (2)0.0016 (3)
Br20.0516 (3)0.0410 (2)0.0277 (3)0.0037 (2)0.0026 (3)0.0051 (3)
Na10.0180 (10)0.0155 (7)0.0211 (14)0.0004 (5)0.0014 (8)0.0006 (6)
Na20.0197 (11)0.0147 (7)0.0213 (14)0.0003 (6)0.0004 (8)0.0001 (5)
O10.0191 (14)0.0220 (14)0.0276 (15)0.0005 (11)0.0029 (12)0.0007 (11)
O20.0220 (16)0.0263 (14)0.0235 (18)0.0009 (13)0.0005 (13)0.0040 (13)
O30.0198 (15)0.0244 (14)0.0287 (16)0.0009 (12)0.0051 (11)0.0023 (12)
O40.0200 (16)0.0248 (14)0.0230 (17)0.0007 (12)0.0010 (13)0.0050 (13)
O50.0232 (15)0.0182 (13)0.0297 (16)0.0008 (12)0.0024 (13)0.0033 (12)
O60.0224 (16)0.0239 (14)0.0285 (17)0.0023 (12)0.0057 (12)0.0067 (12)
O70.0233 (16)0.0245 (15)0.0288 (16)0.0024 (12)0.0030 (12)0.0071 (12)
O80.0227 (15)0.0179 (13)0.0261 (16)0.0018 (11)0.0028 (12)0.0017 (12)
O90.0267 (15)0.0192 (14)0.0262 (16)0.0017 (12)0.0042 (13)0.0026 (12)
O100.0273 (16)0.0183 (14)0.0267 (16)0.0013 (12)0.0041 (12)0.0031 (11)
N10.030 (2)0.0216 (17)0.021 (2)0.0059 (16)0.0010 (17)0.0027 (15)
N20.046 (2)0.0195 (17)0.027 (2)0.0025 (16)0.0092 (17)0.0028 (15)
N30.031 (2)0.0231 (17)0.022 (2)0.0029 (16)0.0017 (18)0.0007 (15)
N40.061 (3)0.028 (2)0.031 (2)0.012 (2)0.021 (2)0.0027 (17)
C10.022 (2)0.0159 (17)0.0157 (19)0.0030 (14)0.0003 (15)0.0020 (14)
C20.025 (2)0.027 (2)0.028 (2)0.0044 (18)0.0001 (19)0.0064 (18)
C30.029 (2)0.0203 (19)0.023 (2)0.0013 (17)0.0015 (17)0.0030 (17)
C40.066 (4)0.018 (2)0.053 (3)0.002 (2)0.019 (3)0.009 (2)
C50.066 (4)0.032 (2)0.027 (3)0.004 (2)0.016 (3)0.001 (2)
C60.026 (3)0.049 (3)0.039 (4)0.004 (2)0.004 (3)0.002 (2)
C70.024 (2)0.0187 (18)0.0142 (19)0.0032 (15)0.0014 (15)0.0030 (14)
C80.021 (2)0.030 (2)0.030 (2)0.0014 (18)0.0002 (18)0.0111 (19)
C90.028 (2)0.0211 (19)0.024 (2)0.0028 (17)0.0043 (18)0.0001 (16)
C100.116 (6)0.025 (3)0.078 (5)0.003 (3)0.056 (4)0.009 (3)
C110.089 (5)0.039 (3)0.027 (3)0.004 (2)0.029 (3)0.001 (2)
C120.040 (4)0.065 (4)0.053 (5)0.017 (3)0.008 (3)0.015 (3)
O110.0229 (18)0.0383 (17)0.024 (2)0.0050 (15)0.0012 (15)0.0031 (16)
O120.062 (3)0.036 (2)0.034 (2)0.0029 (19)0.015 (2)0.0038 (17)
O130.0214 (17)0.0368 (17)0.023 (2)0.0041 (15)0.0035 (15)0.0007 (15)
O140.069 (3)0.044 (2)0.033 (3)0.008 (2)0.011 (2)0.0001 (19)
Geometric parameters (Å, º) top
Na1—O12.367 (4)N4—C121.530 (10)
Na1—O52.368 (3)C1—C21.531 (6)
Na1—O62.369 (3)C2—H2A0.9900
Na1—O8i2.517 (4)C2—H2B0.9900
Na1—O92.442 (4)C2—C31.514 (6)
Na1—O102.361 (4)C3—H3A0.9900
Na2—O32.359 (4)C3—H3B0.9900
Na2—O5ii2.543 (4)C4—H4A0.9800
Na2—O72.368 (3)C4—H4B0.9800
Na2—O82.364 (3)C4—H4C0.9800
Na2—O92.361 (3)C5—H5C0.9800
Na2—O102.449 (4)C5—H5D0.9800
O1—C11.241 (5)C5—H5E0.9800
O2—C11.281 (5)C6—H6C0.9800
O3—C71.249 (5)C6—H6D0.9800
O4—C71.282 (5)C6—H6E0.9800
O5—H5A0.97 (6)C7—C81.519 (6)
O5—H5B0.82 (6)C8—H8C0.9900
O6—H6A0.80 (3)C8—H8D0.9900
O6—H6B0.82 (3)C8—C91.506 (6)
O7—H7A0.82 (3)C9—H9C0.9900
O7—H7B0.80 (3)C9—H9D0.9900
O8—H8A0.81 (3)C10—H10C0.9800
O8—H8B0.81 (3)C10—H10D0.9800
O9—H9A0.93 (6)C10—H10E0.9800
O9—H9B0.79 (6)C11—H11A0.9800
O10—H10A0.78 (6)C11—H11B0.9800
O10—H10B0.90 (6)C11—H11C0.9800
N1—H10.83 (4)C12—H12A0.9800
N1—N21.471 (6)C12—H12B0.9800
N1—C31.468 (6)C12—H12C0.9800
N2—C41.499 (6)O11—H11D0.80 (3)
N2—C51.498 (8)O11—H11E0.80 (3)
N2—C61.489 (8)O12—H12D0.80 (3)
N3—H30.84 (4)O12—H12E0.80 (3)
N3—N41.466 (6)O13—H13A0.80 (3)
N3—C91.481 (6)O13—H13B0.80 (3)
N4—C101.463 (7)O14—H14A0.87 (5)
N4—C111.497 (8)O14—H14B0.87 (5)
O1—Na1—O5109.25 (14)N3—N4—C11105.8 (4)
O1—Na1—O6100.00 (12)N3—N4—C12105.9 (4)
O1—Na1—O8i160.43 (13)C10—N4—N3114.7 (4)
O1—Na1—O983.01 (11)C10—N4—C11109.1 (5)
O5—Na1—O680.32 (12)C10—N4—C12111.6 (5)
O5—Na1—O8i89.64 (11)C11—N4—C12109.5 (5)
O5—Na1—O9167.30 (15)O1—C1—O2124.5 (4)
O6—Na1—O8i87.89 (13)O1—C1—C2119.6 (4)
O6—Na1—O9101.22 (13)O2—C1—C2115.9 (4)
O9—Na1—O8i77.87 (13)C1—C2—H2A108.7
O10—Na1—O192.84 (12)C1—C2—H2B108.7
O10—Na1—O587.35 (12)H2A—C2—H2B107.6
O10—Na1—O6164.52 (13)C3—C2—C1114.2 (4)
O10—Na1—O8i82.69 (12)C3—C2—H2A108.7
O10—Na1—O988.81 (11)C3—C2—H2B108.7
O3—Na2—O5ii160.55 (13)N1—C3—C2107.7 (3)
O3—Na2—O7100.26 (12)N1—C3—H3A110.2
O3—Na2—O8109.70 (14)N1—C3—H3B110.2
O3—Na2—O993.04 (13)C2—C3—H3A110.2
O3—Na2—O1083.44 (11)C2—C3—H3B110.2
O5ii—Na2—H9A71.3 (14)H3A—C3—H3B108.5
O7—Na2—O5ii87.40 (13)N2—C4—H4A109.5
O7—Na2—H9A143.9 (13)N2—C4—H4B109.5
O7—Na2—O10100.79 (13)N2—C4—H4C109.5
O8—Na2—O5ii89.11 (11)H4A—C4—H4B109.5
O8—Na2—O780.45 (11)H4A—C4—H4C109.5
O8—Na2—O10166.49 (15)H4B—C4—H4C109.5
O9—Na2—O5ii82.56 (12)N2—C5—H5C109.5
O9—Na2—O7164.42 (13)N2—C5—H5D109.5
O9—Na2—O887.49 (12)N2—C5—H5E109.5
O9—Na2—O1088.67 (11)H5C—C5—H5D109.5
O10—Na2—O5ii77.55 (12)H5C—C5—H5E109.5
C1—O1—Na1124.7 (2)H5D—C5—H5E109.5
C7—O3—Na2124.5 (3)N2—C6—H6C109.5
Na1—O5—Na2i90.26 (13)N2—C6—H6D109.5
Na1—O5—H5A123 (3)N2—C6—H6E109.5
Na1—O5—H5B132 (4)H6C—C6—H6D109.5
Na2i—O5—H5A106 (4)H6C—C6—H6E109.5
Na2i—O5—H5B93 (4)H6D—C6—H6E109.5
H5A—O5—H5B102 (5)O3—C7—O4124.2 (4)
Na1—O6—H6A124 (4)O3—C7—C8119.3 (4)
Na1—O6—H6B120 (4)O4—C7—C8116.5 (4)
H6A—O6—H6B108 (6)C7—C8—H8C108.4
Na2—O7—H7A117 (4)C7—C8—H8D108.4
Na2—O7—H7B122 (4)H8C—C8—H8D107.5
H7A—O7—H7B105 (5)C9—C8—C7115.3 (4)
Na1ii—O8—H8A103 (4)C9—C8—H8C108.4
Na1ii—O8—H8B94 (5)C9—C8—H8D108.4
Na2—O8—Na1ii91.00 (13)N3—C9—C8108.6 (4)
Na2—O8—H8A126 (4)N3—C9—H9C110.0
Na2—O8—H8B120 (4)N3—C9—H9D110.0
H8A—O8—H8B111 (6)C8—C9—H9C110.0
Na1—O9—H9A132 (4)C8—C9—H9D110.0
Na1—O9—H9B107 (4)H9C—C9—H9D108.3
Na2—O9—Na191.34 (13)N4—C10—H10C109.5
Na2—O9—H9A96 (4)N4—C10—H10D109.5
Na2—O9—H9B123 (4)N4—C10—H10E109.5
H9A—O9—H9B108 (5)H10C—C10—H10D109.5
Na1—O10—Na291.18 (13)H10C—C10—H10E109.5
Na1—O10—H10A127 (4)H10D—C10—H10E109.5
Na1—O10—H10B112 (4)N4—C11—H11A109.5
Na2—O10—H10A102 (4)N4—C11—H11B109.5
Na2—O10—H10B115 (4)N4—C11—H11C109.5
H10A—O10—H10B108 (6)H11A—C11—H11B109.5
N2—N1—H1104 (5)H11A—C11—H11C109.5
C3—N1—H1106 (5)H11B—C11—H11C109.5
C3—N1—N2113.3 (3)N4—C12—H12A109.5
N1—N2—C4114.0 (4)N4—C12—H12B109.5
N1—N2—C5106.6 (4)N4—C12—H12C109.5
N1—N2—C6107.7 (4)H12A—C12—H12B109.5
C5—N2—C4108.7 (4)H12A—C12—H12C109.5
C6—N2—C4110.1 (4)H12B—C12—H12C109.5
C6—N2—C5109.6 (4)H11D—O11—H11E107 (8)
N4—N3—H3108 (4)H12D—O12—H12E111 (9)
N4—N3—C9113.9 (3)H13A—O13—H13B102 (8)
C9—N3—H3106 (5)H14A—O14—H14B113 (8)
Na1—O1—C1—O299.2 (4)N4—N3—C9—C8167.1 (4)
Na1—O1—C1—C278.2 (4)C1—C2—C3—N173.2 (5)
Na2—O3—C7—O499.5 (4)C3—N1—N2—C443.8 (6)
Na2—O3—C7—C878.8 (4)C3—N1—N2—C5163.8 (4)
O1—C1—C2—C312.3 (5)C3—N1—N2—C678.6 (5)
O2—C1—C2—C3170.1 (4)C7—C8—C9—N373.4 (5)
O3—C7—C8—C910.5 (6)C9—N3—N4—C1042.9 (7)
O4—C7—C8—C9171.1 (4)C9—N3—N4—C11163.1 (5)
N2—N1—C3—C2165.2 (4)C9—N3—N4—C1280.7 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.97 (6)1.79 (6)2.746 (4)172 (6)
O5—H5B···O11iii0.82 (6)2.02 (6)2.819 (5)167 (6)
O6—H6A···O4iv0.80 (3)2.06 (3)2.845 (5)165 (6)
O6—H6B···O2i0.82 (3)1.91 (3)2.732 (4)175 (6)
O7—H7A···O2v0.82 (3)2.05 (3)2.856 (5)165 (6)
O7—H7B···O4ii0.80 (3)1.94 (3)2.731 (4)169 (6)
O8—H8A···O13ii0.81 (3)2.06 (3)2.815 (5)155 (5)
O8—H8B···O3ii0.81 (3)1.95 (3)2.754 (4)168 (7)
O9—H9A···O6ii0.93 (6)1.96 (6)2.852 (4)160 (5)
O9—H9B···O130.79 (6)2.01 (6)2.772 (5)160 (6)
O10—H10A···O11v0.78 (6)2.00 (6)2.771 (5)167 (6)
O10—H10B···O7i0.90 (6)1.99 (6)2.853 (4)158 (5)
O11—H11D···O120.80 (3)1.94 (3)2.744 (6)179 (7)
O11—H11E···O20.80 (3)1.92 (3)2.719 (5)174 (9)
O13—H13A···O140.80 (3)1.95 (3)2.733 (6)170 (6)
O13—H13B···O4iv0.80 (3)1.94 (3)2.727 (5)168 (9)
N1—H1···Br1i0.83 (5)2.57 (5)3.379 (5)167 (5)
N3—H3···Br2v0.84 (5)2.57 (5)3.394 (5)169 (5)
O12—H12D···Br1i0.80 (5)2.52 (6)3.316 (4)172 (6)
O12—H12E···Br10.80 (5)2.49 (6)3.289 (4)177 (8)
O14—H14A···Br2i0.87 (7)2.47 (7)3.323 (5)168 (7)
O14—H14B···Br20.87 (6)2.41 (6)3.281 (5)175 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1/2, y+2, z; (iv) x+1/2, y+2, z; (v) x1/2, y+1, z.
Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II) top
Crystal data top
[Na2(C6H14N2O2)2(H2O)4]·I2F(000) = 1312
Mr = 664.23Dx = 1.779 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.7455 (11) ÅCell parameters from 9932 reflections
b = 11.4530 (7) Åθ = 3.1–27.9°
c = 10.9733 (7) ŵ = 2.61 mm1
β = 92.382 (2)°T = 173 K
V = 2479.4 (3) Å3Plate, colourless
Z = 40.3 × 0.2 × 0.07 mm
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
5012 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.048
φ and ω scansθmax = 27.1°, θmin = 2.7°
Absorption correction: multi-scan
(TWINABS; Krause et al., 2015)
h = 2525
Tmin = 0.301, Tmax = 0.431k = 014
5475 measured reflectionsl = 014
5475 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0177P)2 + 4.3911P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
5475 reflectionsΔρmax = 0.70 e Å3
286 parametersΔρmin = 0.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.25574 (2)0.48014 (2)0.74401 (2)0.01967 (6)
I20.02717 (2)0.01593 (2)0.75216 (2)0.02095 (7)
Na10.45889 (8)0.30771 (15)0.87401 (15)0.0228 (4)
Na20.54574 (8)0.37173 (13)0.56036 (14)0.0177 (3)
H5A0.412 (3)0.150 (5)1.034 (5)0.048 (18)*
O10.38099 (12)0.1816 (2)0.7525 (3)0.0205 (5)
O20.29207 (14)0.0789 (3)0.8118 (2)0.0219 (6)
O30.55979 (13)0.3377 (3)0.7678 (3)0.0252 (6)
O40.57944 (14)0.3107 (3)0.9672 (2)0.0193 (6)
O50.43527 (15)0.2101 (3)1.0559 (3)0.0212 (6)
H5B0.418 (3)0.246 (5)1.113 (5)0.038 (15)*
O60.42378 (16)0.5067 (3)0.8601 (3)0.0273 (7)
H6A0.3822660.5129610.8248310.041*
H6B0.4280590.5683620.9087240.041*
O70.63392 (14)0.4980 (2)0.5020 (3)0.0225 (6)
H7A0.6599510.4652420.4444910.034*
H7B0.6627430.5179980.5654730.034*
O80.49586 (16)0.4327 (3)0.3560 (3)0.0225 (6)
H8A0.459 (3)0.425 (5)0.314 (6)0.049 (17)*
H8B0.517 (3)0.453 (5)0.292 (7)0.06 (2)*
N10.16954 (18)0.1758 (3)0.6228 (3)0.0167 (7)
H10.137 (3)0.143 (5)0.651 (5)0.044 (17)*
N20.13426 (15)0.2379 (3)0.5206 (3)0.0142 (7)
N30.78736 (16)0.2584 (3)0.9016 (3)0.0180 (7)
H30.783 (3)0.195 (5)0.850 (5)0.049 (17)*
N40.83846 (16)0.2233 (3)0.9966 (3)0.0183 (8)
C10.32344 (17)0.1332 (3)0.7334 (4)0.0155 (7)
C20.29341 (19)0.1380 (4)0.6039 (4)0.0202 (8)
H2A0.3231680.0928640.5507940.024*
H2B0.2941000.2201900.5760420.024*
C30.22141 (19)0.0918 (3)0.5852 (4)0.0186 (8)
H3A0.2130160.0726220.4979210.022*
H3B0.2169580.0188750.6325690.022*
C40.0888 (2)0.3230 (4)0.5808 (4)0.0227 (9)
H4A0.0559920.2803830.6284830.034*
H4B0.0646200.3700230.5183350.034*
H4C0.1160520.3742880.6348710.034*
C50.0924 (2)0.1603 (4)0.4372 (4)0.0204 (9)
H5C0.1222470.1063280.3954520.031*
H5D0.0672480.2080760.3767220.031*
H5E0.0605080.1156560.4849260.031*
C60.1844 (2)0.3039 (4)0.4481 (4)0.0197 (8)
H6C0.2126310.3528800.5030360.029*
H6D0.1601270.3533510.3879410.029*
H6E0.2132230.2485830.4060330.029*
C70.59886 (19)0.3209 (3)0.8594 (3)0.0149 (8)
C80.67425 (19)0.3096 (3)0.8349 (3)0.0176 (8)
H8C0.6802100.2446860.7767520.021*
H8D0.6893600.3822220.7953420.021*
C90.71953 (19)0.2876 (3)0.9479 (4)0.0185 (8)
H9A0.7222290.3580181.0001690.022*
H9B0.7018790.2219320.9960130.022*
C100.8943 (2)0.1664 (4)0.9296 (4)0.0270 (10)
H10A0.8764460.0975290.8859630.040*
H10B0.9305790.1426010.9879100.040*
H10C0.9122110.2218020.8710140.040*
C110.8123 (2)0.1393 (4)1.0886 (4)0.0309 (10)
H11A0.7791700.1789561.1383100.046*
H11B0.8500600.1110681.1413790.046*
H11C0.7904870.0730261.0462520.046*
C120.8657 (2)0.3300 (4)1.0583 (5)0.0290 (10)
H12A0.8832020.3834250.9974230.044*
H12B0.9023430.3082791.1168940.044*
H12C0.8293890.3686121.1014240.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02077 (12)0.02229 (12)0.01602 (12)0.00185 (10)0.00150 (12)0.00076 (10)
I20.01730 (12)0.02514 (12)0.02035 (14)0.00498 (9)0.00011 (13)0.00198 (10)
Na10.0199 (8)0.0258 (9)0.0226 (8)0.0008 (7)0.0001 (7)0.0014 (7)
Na20.0173 (7)0.0207 (8)0.0151 (7)0.0017 (6)0.0004 (6)0.0007 (6)
O10.0172 (13)0.0235 (13)0.0206 (13)0.0024 (10)0.0028 (11)0.0040 (11)
O20.0199 (14)0.0282 (16)0.0178 (14)0.0012 (12)0.0016 (11)0.0040 (12)
O30.0190 (14)0.0382 (16)0.0181 (15)0.0030 (11)0.0012 (12)0.0042 (13)
O40.0182 (14)0.0237 (15)0.0160 (14)0.0010 (12)0.0017 (11)0.0015 (11)
O50.0166 (15)0.0250 (16)0.0223 (16)0.0002 (12)0.0036 (12)0.0047 (13)
O60.0216 (16)0.0324 (18)0.0276 (16)0.0020 (13)0.0013 (12)0.0066 (13)
O70.0194 (15)0.0321 (17)0.0162 (13)0.0044 (13)0.0040 (11)0.0036 (12)
O80.0207 (17)0.0298 (17)0.0168 (15)0.0035 (13)0.0013 (13)0.0015 (12)
N10.0169 (18)0.0223 (18)0.0107 (15)0.0012 (15)0.0017 (13)0.0015 (13)
N20.0138 (14)0.0175 (18)0.0112 (17)0.0014 (14)0.0011 (13)0.0009 (11)
N30.0145 (17)0.0221 (18)0.0173 (17)0.0033 (14)0.0005 (13)0.0014 (13)
N40.0143 (15)0.020 (2)0.0202 (18)0.0029 (12)0.0018 (14)0.0014 (14)
C10.0142 (17)0.0135 (16)0.0188 (18)0.0056 (13)0.0015 (15)0.0011 (14)
C20.014 (2)0.027 (2)0.019 (2)0.0001 (17)0.0005 (16)0.0008 (17)
C30.0186 (19)0.018 (2)0.0184 (19)0.0011 (16)0.0020 (16)0.0012 (15)
C40.024 (2)0.021 (2)0.022 (2)0.0074 (18)0.0002 (18)0.0036 (17)
C50.021 (2)0.024 (2)0.0159 (19)0.0038 (18)0.0056 (16)0.0041 (16)
C60.018 (2)0.022 (2)0.019 (2)0.0033 (16)0.0001 (16)0.0030 (16)
C70.0135 (19)0.0137 (19)0.0176 (18)0.0011 (15)0.0006 (15)0.0009 (14)
C80.019 (2)0.0152 (19)0.0182 (18)0.0030 (15)0.0011 (15)0.0014 (14)
C90.0172 (19)0.019 (2)0.0194 (19)0.0007 (15)0.0032 (15)0.0012 (15)
C100.015 (2)0.034 (3)0.032 (2)0.0107 (19)0.0003 (18)0.006 (2)
C110.027 (2)0.042 (3)0.023 (2)0.006 (2)0.0025 (19)0.013 (2)
C120.022 (2)0.028 (3)0.037 (3)0.0025 (19)0.005 (2)0.011 (2)
Geometric parameters (Å, º) top
Na1—Na2i3.325 (2)N3—N41.476 (4)
Na1—Na23.977 (2)N3—C91.490 (5)
Na1—O12.462 (3)N4—C101.499 (5)
Na1—O32.374 (3)N4—C111.502 (5)
Na1—O42.552 (3)N4—C121.487 (6)
Na1—O52.351 (3)C1—C21.518 (5)
Na1—O62.385 (4)C2—H2A0.9900
Na1—O8i2.857 (4)C2—H2B0.9900
Na1—C72.779 (4)C2—C31.522 (5)
Na2—Na2ii3.668 (3)C3—H3A0.9900
Na2—O32.315 (3)C3—H3B0.9900
Na2—O4iii2.431 (3)C4—H4A0.9800
Na2—O5iii2.373 (3)C4—H4B0.9800
Na2—O72.372 (3)C4—H4C0.9800
Na2—O8ii2.569 (4)C5—H5C0.9800
Na2—O82.510 (3)C5—H5D0.9800
O1—C11.274 (4)C5—H5E0.9800
O2—C11.247 (4)C6—H6C0.9800
O3—C71.256 (5)C6—H6D0.9800
O4—C71.264 (5)C6—H6E0.9800
O5—H5A0.86 (6)C7—C81.529 (5)
O5—H5B0.84 (6)C8—H8C0.9900
O6—H6A0.8946C8—H8D0.9900
O6—H6B0.8873C8—C91.520 (5)
O7—H7A0.9110C9—H9A0.9900
O7—H7B0.9103C9—H9B0.9900
O8—H8A0.85 (6)C10—H10A0.9800
O8—H8B0.86 (7)C10—H10B0.9800
N1—H10.83 (6)C10—H10C0.9800
N1—N21.478 (4)C11—H11A0.9800
N1—C31.476 (5)C11—H11B0.9800
N2—C41.496 (5)C11—H11C0.9800
N2—C51.499 (5)C12—H12A0.9800
N2—C61.500 (5)C12—H12B0.9800
N3—H30.92 (6)C12—H12C0.9800
O1—Na1—O4140.94 (12)N3—N4—C10105.5 (3)
O1—Na1—O8i63.43 (9)N3—N4—C11113.9 (3)
O1—Na1—C7126.95 (12)N3—N4—C12108.8 (3)
O3—Na1—O1109.70 (11)C10—N4—C11109.4 (3)
O3—Na1—O453.63 (9)C12—N4—C10108.8 (3)
O3—Na1—O694.48 (12)C12—N4—C11110.3 (4)
O3—Na1—O8i83.30 (11)O1—C1—C2116.7 (3)
O3—Na1—C726.77 (10)O2—C1—O1124.6 (4)
O4—Na1—O8i78.70 (10)O2—C1—C2118.6 (3)
O4—Na1—C727.00 (10)C1—C2—H2A108.3
O5—Na1—O192.25 (11)C1—C2—H2B108.3
O5—Na1—O3133.27 (12)C1—C2—C3116.1 (3)
O5—Na1—O483.16 (11)H2A—C2—H2B107.4
O5—Na1—O6116.18 (13)C3—C2—H2A108.3
O5—Na1—O8i70.18 (11)C3—C2—H2B108.3
O5—Na1—C7107.91 (12)N1—C3—C2113.0 (3)
O6—Na1—O1110.65 (11)N1—C3—H3A109.0
O6—Na1—O4106.06 (12)N1—C3—H3B109.0
O6—Na1—O8i172.17 (12)C2—C3—H3A109.0
O6—Na1—C7103.39 (12)C2—C3—H3B109.0
C7—Na1—O8i77.92 (11)H3A—C3—H3B107.8
O3—Na2—O4iii104.18 (11)N2—C4—H4A109.5
O3—Na2—O5iii91.51 (11)N2—C4—H4B109.5
O3—Na2—O7108.00 (12)N2—C4—H4C109.5
O3—Na2—O8162.13 (12)H4A—C4—H4B109.5
O3—Na2—O8ii79.78 (11)H4A—C4—H4C109.5
O4iii—Na2—O8ii175.55 (12)H4B—C4—H4C109.5
O4iii—Na2—O888.14 (11)N2—C5—H5C109.5
O5iii—Na2—O4iii85.36 (11)N2—C5—H5D109.5
O5iii—Na2—O8ii92.56 (12)N2—C5—H5E109.5
O5iii—Na2—O876.41 (11)H5C—C5—H5D109.5
O7—Na2—O4iii101.17 (11)H5C—C5—H5E109.5
O7—Na2—O5iii156.89 (13)H5D—C5—H5E109.5
O7—Na2—O881.63 (11)N2—C6—H6C109.5
O7—Na2—O8ii79.28 (11)N2—C6—H6D109.5
O8—Na2—O8ii87.55 (11)N2—C6—H6E109.5
C1—O1—Na1151.3 (3)H6C—C6—H6D109.5
C7—O3—Na194.9 (2)H6C—C6—H6E109.5
C7—O3—Na2149.0 (2)H6D—C6—H6E109.5
Na2i—O4—Na183.67 (10)O3—C7—Na158.34 (19)
C7—O4—Na186.6 (2)O3—C7—O4124.2 (3)
C7—O4—Na2i124.9 (3)O3—C7—C8116.2 (3)
Na1—O5—Na2i89.48 (11)O4—C7—Na166.4 (2)
Na1—O5—H5A105 (4)O4—C7—C8119.5 (3)
Na1—O5—H5B120 (4)C8—C7—Na1169.5 (3)
Na2i—O5—H5A99 (4)C7—C8—H8C108.6
Na2i—O5—H5B126 (4)C7—C8—H8D108.6
H5A—O5—H5B112 (5)H8C—C8—H8D107.6
Na1—O6—H6A111.3C9—C8—C7114.5 (3)
Na1—O6—H6B134.6C9—C8—H8C108.6
H6A—O6—H6B105.0C9—C8—H8D108.6
Na2—O7—H7A112.2N3—C9—C8105.4 (3)
Na2—O7—H7B112.9N3—C9—H9A110.7
H7A—O7—H7B106.3N3—C9—H9B110.7
Na1iii—O8—H8A74 (4)C8—C9—H9A110.7
Na1iii—O8—H8B117 (4)C8—C9—H9B110.7
Na2—O8—Na1iii76.24 (10)H9A—C9—H9B108.8
Na2ii—O8—Na1iii136.82 (13)N4—C10—H10A109.5
Na2—O8—Na2ii92.45 (11)N4—C10—H10B109.5
Na2—O8—H8A139 (4)N4—C10—H10C109.5
Na2ii—O8—H8A90 (4)H10A—C10—H10B109.5
Na2—O8—H8B129 (4)H10A—C10—H10C109.5
Na2ii—O8—H8B103 (4)H10B—C10—H10C109.5
H8A—O8—H8B90 (5)N4—C11—H11A109.5
N2—N1—H199 (4)N4—C11—H11B109.5
C3—N1—H1112 (4)N4—C11—H11C109.5
C3—N1—N2114.3 (3)H11A—C11—H11B109.5
N1—N2—C4104.6 (3)H11A—C11—H11C109.5
N1—N2—C5114.1 (3)H11B—C11—H11C109.5
N1—N2—C6110.1 (3)N4—C12—H12A109.5
C4—N2—C5109.3 (3)N4—C12—H12B109.5
C4—N2—C6109.1 (3)N4—C12—H12C109.5
C5—N2—C6109.5 (3)H12A—C12—H12B109.5
N4—N3—H3105 (4)H12A—C12—H12C109.5
N4—N3—C9114.7 (3)H12B—C12—H12C109.5
C9—N3—H3109 (4)
Na1—O1—C1—O248.2 (7)O2—C1—C2—C39.4 (5)
Na1—O1—C1—C2134.9 (4)O3—C7—C8—C9179.1 (3)
Na1—O3—C7—O48.8 (4)O4—C7—C8—C90.5 (5)
Na1—O3—C7—C8169.7 (3)N2—N1—C3—C2102.5 (4)
Na1—O4—C7—O38.2 (4)N4—N3—C9—C8174.9 (3)
Na1—O4—C7—C8170.3 (3)C1—C2—C3—N178.7 (4)
Na1—C7—C8—C9122.6 (14)C3—N1—N2—C4175.9 (3)
Na2—O3—C7—Na1175.0 (6)C3—N1—N2—C564.8 (4)
Na2—O3—C7—O4176.2 (3)C3—N1—N2—C658.8 (4)
Na2—O3—C7—C85.3 (7)C7—C8—C9—N3170.1 (3)
Na2i—O4—C7—Na179.9 (2)C9—N3—N4—C10164.3 (3)
Na2i—O4—C7—O388.0 (5)C9—N3—N4—C1144.3 (4)
Na2i—O4—C7—C890.4 (4)C9—N3—N4—C1279.2 (4)
O1—C1—C2—C3173.5 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1i0.85 (6)1.89 (6)2.741 (4)175 (6)
O7—H7B···O2iv0.911.732.629 (4)169
O8—H8A···O1iii0.85 (6)2.05 (6)2.815 (4)149 (6)
N1—H1···I20.82 (6)2.87 (6)3.688 (4)177 (5)
N3—H3···I1v0.92 (6)2.76 (6)3.650 (3)161 (5)
O5—H5A···O7v0.86 (6)2.00 (6)2.846 (4)172 (4)
O6—H6A···I10.892.643.518 (3)166
O6—H6B···O4vi0.891.952.825 (4)168
O7—H7A···I1ii0.912.783.548 (3)143
O8—H8B···O6ii0.86 (7)2.13 (7)2.989 (5)175 (5)
C3—H3A···I1iii0.993.013.920 (4)154
C11—H11B···I2vii0.983.023.975 (4)165
C12—H12C···I1vi0.982.993.952 (5)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1, z+2; (vii) x+1, y, z+2.
 

Funding information

Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationAndrade, L. C. R., Costa, M. M. R., Paixao, J., Agostinho Moreira, J., Almeida, A., Chaves, M. R. & Klopperpieper, A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 83–84.  Google Scholar
First citationAndrade, L. C. R., Costa, M. M. R., Pinto, F., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 537–538.  Google Scholar
First citationAndrade, L. C. R., Costa, M. M. R., Pinto, F., Rodrigues, V. H., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 227–228.  Google Scholar
First citationBērziņš, A. & Actiņš, A. (2014). CrystEngComm, 16, 3926–3934.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiller, S. A., Eremeev, A. V., Kalvin'sh, I. Y., Liepin'sh, É. É., & Semenikhina, V. G. (1975). Chem. Heterocycl. Compd. 11, 1378–1382.  CrossRef Google Scholar
First citationGörgens, C., Guddat, S., Dib, J., Geyer, H., Schänzer, W. & Thevis, M. (2015). Drug Test. Anal. 7, 973–979.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalvins, I., Liepins, E., Loza, E., Dambrova, M., Stonans, L., Lola, D., Kuka, J., Pugovics, O., Vilskersts, R. & Grinberga, S. (2014). US Patent, US 20140088125 A1.  Google Scholar
First citationKalvins, I. & Stonans, I. (2009). WO Patent, WO/2009/071586.  Google Scholar
First citationKemme, A., Bleidelis, J., Kalvinsh, I. & Eremeev, A. (1983). Latv. PSR Zinat. Akad. Vestis, 2, 215–218.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiepinsh, E., Makarova, E., Sevostjanovs, E., Hartmane, D., Cirule, H., Zharkova-Malkova, O., Grinberga, S. & Dambrova, M. (2017). Basic & Clinical Pharmacology & Toxicology 120, 450-456.  CrossRef Google Scholar
First citationNazarenko, A. Y. (2018). Private communication (refcodes CCDC 1822460–1822463. CCDC, Cambridge, England.   Google Scholar
First citationRodrigues, V. H., Costa, M. M. R., Klopperpieper, A., Chaves, M. R., Almeida, A. & Agostinho Moreira, J. (2005). Z. Kristallogr. New Cryst. Struct. 220, 363–364.  Google Scholar
First citationSheldrick, G. M. (2008). CELL_NOW. Version 2008/4. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, J. (2013). Patent CA 2661357 C, 2013.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationZvirgzdiņš, A., Veldre, K. & Actiņš, A. (2011). Latvian J. Chem. 50, 64–72.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds